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a b s t r a c t

Accurately sorting individual neurons is a technical challenge and plays an important role in identifying
information flow among neurons. Spike sorting errors are almost unavoidable and can roughly be divided
into two types: false positives (FPs) and false negatives (FNs). This study investigates how FPs and FNs
affect results of the Granger causality (GC) analysis, a powerful method for detecting causal interactions
between time series signals. We derived an explicit formula based on a first order vector autoregressive
model to analytically study the effects of FPs and FNs. The proposed formulawas able to reveal the intrinsic
properties of the GC, and was verified by simulation studies. The effects of FPs and FNs were further
evaluated using real experimental data from the ventroposterior medial nucleus of the thalamus. Some
practical suggestions for spike sorting are also provided in this paper.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In neuroscience research, it is important to identify information
flow among multiple neurons in the brain, according to the
recorded neural activity data. A powerful method for achieving
this is the Granger causality (GC) which arose in economics after
being introduced by Wiener and Granger (Granger, 1969, 1980;
Wiener, 1956). The GC is a time series inference (TSI) type of
method, proposes that if the prediction of one time series can be
improved with the knowledge of a second time series, then there
is a causal influence from the second time series to the first. This
prediction ismade by using the vector autoregressive (VAR)model.
In this model, if the variance of the prediction error of one time
series at the present time can be reduced by including the past
values of another series, then the latter is said to Granger-cause
the former. This causality can be quantified by the so-called GC
Index (GCI) which can be used to determine whether there is any
causal interaction between time series. The GC was shown to be
effective and has been widely deployed in recent neuroscience
research (Bressler, Richter, Chen, & Ding, 2007; Cadotte, DeMarse,
He, &Ding, 2008; Cadotte et al., 2010; Cao,Maran, Dhamala, Jaeger,
& Heck, 2012; Zhang et al., 2012). In addition to the time domain
GC, other versions of the GC (e.g., frequency, and time–frequency
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domain) have been developed aswell (Baccala & Sameshima, 2001;
Dhamala, Rangarajan, & Ding, 2008). The time domain formulation
of GCI is briefly introduced in the next section, and we refer the
reader to an article by Bressler and Seth (2011) for more details
about the GC.

Neurons emit action potentials (APs) that are known as spikes
and play an important role in communicating among cells. The
temporal sequence of APs produced by a neuron, which shows
its own activity, is also known as a spike train. In multi-channel
recordings (Brown, Kass, & Mitra, 2004), the APS of neurons
are detected and differentiated from background electrical noise
before single-unit spike trains are used to probe neural behaviors.
This technical procedure is called spike sorting. However, it is not
easy to obtain spike train data that fully agree with the AP because
of noise, superimposed APs, and difficulties of differentiating
waveforms of APs from different neurons. Spike sorting often
introduces unavoidable errors (Deborah, Won, & Patrick, 2003;
Lewicki, 1998). These errors can roughly be divided into two types,
false positives (FPs) and false negatives (FNs). An FPmeans an error
detection of an event that is not a real spike (just an electrical
noise) or is a spike from another neuron. Conversely, an FN means
that real spikes were not detected or were classified into groups
of other neurons. One may be interested in the question: ‘‘How do
FPs and FNs affect the estimation of functional connectivity among
neurons?’’. This study answered this question analytically and also
via numerical simulations. The change in the GCI due to spike
sorting errors was derived analytically to form an explicit formula,
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and a direct discussion of the effects of FPs and FNs is possible.
Moreover, numerical simulations were used to verify the analyses.
We constructed three types ofmodels for sorting errors: thosewith
uniform, random, and concentrative distributions. That is, errors
occur uniformly, randomly, and concentratively in spike trains.
Changes in the GCI were computed as these types of spike sorting
errors were artificially added to the simulated spike trains, and the
effects on the directional interactions were also investigated.

Finally, it is worth noting that spike trains are non-equally
spaced data and are regarded as a point process. Interpolation or
filtering is usually employed to convert point processes to equally
spaced time series. Previous studies on spike trains (Kaminski,
Ding, Truccolo, & Bressler, 2001; Zhu, Lai, Hoppensteadt, & He,
2003) proposed several methods to convert a time series from
being non-equally spaced to equally spaced. This study adopted
the procedure of binning to convert spike trains into time series
data, which are suitable for GC analyses. Although the GCI between
two point processes has been directly defined in Kim, Putrino,
Ghosh, andBrown (2011) recently,we still cannot abandonbinning
because it reduces the complexity of analysis, and considers also
the effect of temporal summation of action potentials in the
neuroscience.

This article is organized as follows. Section 2 presents an an-
alytic formula based on a first order autoregression to show how
error processes affect the GCI. Section 3 presents some models for
sorting errors andprobes the proposed formula further via numeri-
cal simulations. Section 4 presents a real data evaluationwhere the
effects of sorting error on the GCI are evaluated using real experi-
mental data. Section 5 provides some suggestions for spike sorting
and the discussion.

2. Modeling and analysis

Based on a first order autoregression, we derived an explicit
formula for changes in the GCI in terms of four parameters
involving the error process. We also investigated the influences
of various types of errors on the GCI indicated by the proposed
formula.

2.1. A short introduction to the GCI

Let x and y be two stationary time series with zero means. The
first order linear autoregressive model for x and y is given by
x(n)
y(n)


= A


x(n − 1)
y(n − 1)


+


ϵ(n)
η(n)


, (1)

where A is the model coefficient matrix, and the residuals ϵ and η
are zero-mean uncorrelated white noises with covariance matrix
6. Here the variances Var(ϵ) and Var(η) are called prediction er-
rors, whichmeasure the accuracy of the autoregressive prediction.
More specifically, Var(η) measures the accuracy of the prediction
of y(n) based on the previous values x(n − 1) and y(n − 1).

Now consider the reduced model that excludes the time series
variable x

y(n) = B y(n − 1) + ζ (n), (2)

where B is the corresponding model coefficient. The variance
Var(ζ ) measures the accuracy of the prediction of y(n) based only
on its previous value y(n − 1). For η in (1) and ζ in (2), if Var(η) is
significantly less than Var(ζ ) in some statistical sense, then we say
that x Granger-cause y. This causality can be quantified by the GCI
from x to y formulated as:

Fx→y = ln
Var(ζ )

Var(η)
. (3)

It is clear that Fx→y = 0when Var(η) = Var(ζ ), i.e., x has no causal
influence on y, and Fx→y > 0 when x Granger-cause y. Notice that
Fx→y is nonnegative, i.e., Var(η) is bounded above by Var(ζ ), since
the full model defined in (1) should have a better prediction ability
than the reduced model defined in (2). Finally, we note that the
GCI values should be checked for significance by using hypothesis
testing, andmore details of the GCI can be found in Ding, Chen, and
Bressler (2006), Granger (1969, 1980).

2.2. An explicit formula

When inaccurate spike sorting occurs, the sorting errors can
be regarded as a perturbed error process. For simplicity, we
assume that only the source process x has a sorting error and the
corresponding error process is denoted by δx. We can assume that
δx is zero mean and the model in (1) is perturbed as follows when
δx is superposed on x:

{x + δx}(n)
y(n)


= Ã


{x + δx}(n − 1)

y(n − 1)


+


ϵ̃(n)
η̃(n)


, (4)

where Ã is the corresponding model coefficient matrix, and the
residuals ϵ̃ and η̃ have the covariance matrix 6̃. Let Sy := Var(ζ ),

S := Var(η), and S̃ := Var(η̃). Since the perturbed quantity δx is
superposed only on x, the reduced models for (1) and (4) are the
same as (2). Then the original GCI from x to y and the perturbed
GCI from x + δx to y are

F = ln
Sy
S

and F̃ = ln
Sy
S̃

, (5)

respectively. To investigate the perturbed GCI, we derived an
explicit formula for F̃ in terms of four parameters involving δx
which are ξ1 := E


δx21


, ξ2 := E


x1δx1


, ξ3 := E


y2δx1


, and ξ4 :=

E

y1δx1


. Further denote X0 = E


x21


, Y0 = E


y21


, Y1 = E


y1y2


,

Z1 = E

x1y1


, and Z2 = E


x1y2


. We are now ready to present the

formula for F̃ .

Proposition 1. In the situation described above, F̃ can be presented
explicitly by the following formula (for calculation see the Appendix):

F̃ = ln
Sy

S + Θ
, Θ =


Sy − S


I, (6)

where

I =
1

Y0

X0 + ξ1 + 2ξ2


−


ξ4 + Z1

2

Y0


X0 + ξ1 + 2ξ2


−

1
Sy − S


Y0


ξ3 + Z2

2
+


Y0 − S


ξ4 + Z1

2
− 2Y1


ξ3 + Z2


ξ4 + Z1


. (7)

Note that since S + Θ in (6) is bounded above by Sy, we have that Θ
is upper bounded by Sy − S, i.e., I has an upper bound 1.

We end this subsection by the following two remarks.

Remark 1. In the same situation of Proposition 1, the following
inequalities hold:

Y0 ≥ Sy ≥ S and Y1 ≤ 0. (8)

According to (2), we have Y0 = Var(y1) ≥ Var(ζ ) = Sy. The re-
mainder Sy ≥ S just follows by the reason that the prediction error
of the reducedmodel in (4) is always less than or equal to that of the
fullmodel in (1). The latter holds because of the stationary assump-
tion. IfY1 = E(y1y2) > 0, then ywill not be stationary. ThusY1 ≤ 0.
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