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This paper describes a dynamical process which serves both as a model of temporal pattern recognition in
the brain and as a forward model of neuroimaging data. This process is considered at two separate levels
of analysis: the algorithmic and implementation levels. At an algorithmic level, recognition is based on
the use of Occurrence Time features. Using a speech digit database we show that for noisy recognition
environments, these features rival standard cepstral coefficient features. At an implementation level,
the model is defined using a Weakly Coupled Oscillator (WCO) framework and uses a transient
synchronization mechanism to signal a recognition event. In a second set of experiments, we use the
strength of the synchronization event to predict the high gamma (75-150 Hz) activity produced by the
brain in response to word versus non-word stimuli. Quantitative model fits allow us to make inferences
about parameters governing pattern recognition dynamics in the brain.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Hopfield and Brody (2000, 2001) (HB) have proposed a model
for how the brain might recognize spatiotemporal patterns, and
have applied it to the problem of auditory word recognition. Their
model is particularly appealing at two different levels of analysis
(Marr & Poggio, 1976).

First, at an ‘algorithmic’ level the HB model uses a preprocess-
ing stage comprising a bank of filters and a set of feature detec-
tors which signal onsets, offsets and peak activities in different
frequency ranges. This is broadly consistent with the physiology
of the mammalian auditory system (Casseday, Fremouw, & Covey,
2002; Ghitza, 1986). The key aspect of their algorithm, however, is
that the subsequent pattern recognition is based on the Occurrence
Times (OTs) of features which provides a natural invariance to the
speed at which a word is spoken.

Second, at an ‘implementation’ level the recognition of OTs is
achieved using a transient synchronization mechanism. This phe-
nomenon relies on a combination of three physiological processes
acting in concert (i) spike rate adaptation, (ii) synaptic plastic-
ity and (iii) neuronal synchronization. In the HB model synchro-
nization arises via balanced excitation and inhibition (Tsodyks,
Mitkov, & Sompolinsky, 1993) in a network of Integrate and Fire
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(IF) cells. Together these mechanisms provide a burst of gamma ac-
tivity that corresponds to a ‘recognition event’. This is particularly
interesting to imaging neuroscientists as bursts of gamma activ-
ity (which we define here to be higher than 30 Hz in frequency)
have been observed to accompany auditory word recognition
(Canolty et al., 2007; Lutzenberger, Pulvermuller, & Birbaumer,
1994; Pulvermuller et al., 1996).

This paper draws heavily on the HB model and makes three new
contributions to the literature. First, we consider the algorithmic
level and use a speech database to assess the usefulness of OT
features as compared to standard features used in Automatic
Speech Recognition (ASR) that are based on cepstral coefficients
(Rabiner & Juang, 1993). Both types of features (OT or cepstral)
are then used as input to an identical pattern recognition module.
This allows us to assess the usefulness of the features themselves
independently of the utility of the pattern recognition process or
its putative neurobiological implementation.

Second, we propose a more generic model of transient syn-
chronization based on a Weakly Coupled Oscillator (WCO) frame-
work (Hoppensteadt & Izhikevich, 1997). WCOs are a standard
approach for studying synchronization dynamics (Hoppensteadt &
Izhikevich, 1997) and can be derived by applying a phase redu-
ction approach to neurophysiologically realistic neural (Gutkin,
Ermentrout, & Reyes, 2005) or neural network (Brown, Moehlis, &
Holmes, 2004) models. The only requirement is that the underlying
neurons operate around a limit cycle and interact weakly (Brown
et al., 2004; Ermentrout & Kleinfeld, 2001; Hansel, Mato, & Meu-
nier, 1995).
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This paper uses a WCO model of transient synchronization
which we refer to as the WCO-TS model. As in the HB model,
recognition is signalled by a transient synchronization event,
and this synchronization is brought about by coupling feature
detectors that have nonstationary, pattern-dependent frequency
response profiles. However, the synchronization process itself is
not implemented using balanced excitation and inhibition among
IF cells as in Hopfield and Brody (2001), but is rather described
at the level of phase dynamics. This allows us to be equivocal
about the details of the neural circuits that generate the oscillations
themselves. We see this as a benefit as there are currently a large
number of possible candidates for the underlying processes (see
next section).

Third, we show how the WCO-TS model can be directly fitted
to neuroimaging data. This follows the example of ‘Dynamic Causal
Modelling’ in which differential equation models of physiological
processes are fitted to data and scored against each other using
Bayesian inference (Friston, Harrison, & Penny, 2003; Girolami,
2008; Penny, Litvak, Fuentemilla, Duzel, & Friston, 2009; Penny,
Stephan, Mechelli, & Friston, 2004). Specifically, we show how the
WCO-TS model can be used as a forward model of gamma activity
observed in Electrocorticographic (ECOG) data.

The paper is organized as follows. The following subsection
briefly reviews the topics of gamma activity and network synchro-
nization. Section 2.1 then describes the ECOG data and the spec-
tral analysis methods used to find the underlying gamma burst
associated with word recognition. This is based on previous work
(Canolty et al., 2007). Section 2.2.6 then describes the WCO-TS
model and how it is fitted to data. The results section reports on the
efficacy of OT features as assessed using a spoken digit database,
and on the use of WCO-TS as a forward model of ECOG data.

1.1. Gamma activity and synchronization

The phenomenon of gamma activity has received tremendous
interest in imaging neuroscience. It initially rose to prominence
with regard to the feature binding problem, whereby features of
the same object that are represented in different brain regions
must somehow be tied together to form a coherent whole. It was
proposed that synchronization between the relevant regions at
gamma frequency was just such a mechanism (Singer, 1999). There
has since been a large amount of work in this area with reviews
focusing on its role in large-scale integration (Varela, Lachaux,
Rodriguez, & Martinerie, 2001), enhanced communication (Fries,
2005), attention and memory (Jensen, Kaiser, & Lachaux, 2007)
and spike-timing dependent plasticity (Buzsaki, 2006). Gamma is
also the single frequency band which most strongly predicts BOLD
activity (Goense & Logothetis, 2008). We are therefore interested
in gamma activity as it potentially provides a connection between
computational and imaging neuroscience.

In the auditory domain several studies have found stronger
(25-35 Hz) gamma responses to words as opposed to pseudo-
words (Lutzenberger et al., 1994; Pulvermuller et al., 1996) and in
the 60-70 Hz range to words as opposed to non-words (Eulitz et al.,
1996). Additionally, Canolty et al. (2007) have found High Gamma
(80-200 Hz) responses in ECOG recordings to words as opposed
to non-words. Additionally, this High Gamma activity occurred
sequentially over posterior Superior Temporal Gyrus (STG), mid
STG, followed by Superior Temporal Sulcus (STS). This extends
previous findings from fMRI (Binder et al., 2000) and provides
evidence for a degree of seriality in word processing. It is this data
set that we will analyse using the WCO-TS model.

The above neuroimaging results and related conceptual ad-
vances have motivated a number of theoretical models. For exam-
ple, Shamir, Ghitza, Epstein, and Kopell (2009) have developed a

neurophysiologically realistic model that shows how gamma os-
cillations can directly represent stimuli whose time scale is longer
than a single gamma cycle, as is required for the representation of
auditory words. Hopfield (2004) shows that subthreshold oscilla-
tions can be used to support a spike-time based code that leads
to minimal interference with coexisting firing rate codes, and that
subthreshold oscillations at gamma frequency may be important
for encoding of speech. This principle has been developed by Ghitza
(2007) who also propose that hierarchies of rhythms may be the
mechanism by which the brain integrates information over multi-
ple time scales during language processing.

We now turn to the issue of what is the physiological origin
of gamma activity. As with most oscillatory phenomena in the
brain, gamma is thought to arise from a combination of factors
(i) a cell’s intrinsic ability to oscillate, (ii) the presence of feedback
connections among groups of excitatory and inhibitory neurons
and (iii) the ability of networks of cells to either amplify or
nullify certain oscillations. These factors are described in a recent
comprehensive review (Wang, 2010). One mechanism for network
amplification is the synchronization of cell activity.

The frequency of oscillations produced by single cells is de-
termined primarily by the synaptic time constants and levels of
driving input, with faster synapses and stronger inputs generally
leading to higher frequency oscillations. These oscillations require
that cells receive a tonic excitatory drive. When two cells are con-
nected the resulting activity depends on whether the intervening
interactions are fast or slow.

Mathematical studies of coupled oscillators show that for
fast interactions, synchronization is most readily achieved using
excitatory connections (Vreeswijk, Abbott, & Ermentrout, 1994). In
the mammalian brain fast excitatory connections can be mediated
by electrical synapses or gap junctions. These are found, for
example, between pyramidal cells in hippocampus. In neural
network models with tonic drive, gap junctions can lead to
synchronized gamma activity (Pfeuty, Mato, Golomb, & Hansel,
2003). Traub, Schmitz, Jefferys, and Draguhn (1999), have shown
using simulations that a network of pyramidal cells, electrically
coupled through their axons, can generate High Gamma activity
without chemical synapses.

If the interactions are slow then synchronization is most readily
achieved using inhibitory connections. Chemical synapses with
realistic rise times fall into this ‘slow’ category. For a pair of IF
cells receiving tonic excitation, synchronization can be achieved
using mutual inhibition (Vreeswijk et al., 1994). This result follows
over to conductance-based models with large numbers of cells
(Tiesinga & Jose, 2000; Wang & Buzsaki, 1996; White, Chow, Ritt,
Soto-Trevino, & Kopell, 1998). These network models are referred
to as Inhibitory Network Gamma (ING) oscillators (Bartos, Vida, &
Jonas, 2007). ING oscillators have slow synapses and connections
are weak. For these oscillations to impact on signals sent from
a region they must recruit pyramidal cells which then in turn
re-excite local interneurons. This results in so-called Pyramidal
Inhibitory Network Gamma (PING) oscillators (Whittington, Traub,
Kopell, Ermentrout, & Buhl, 2000).

A potential problem with ING/PING oscillators is that they
are sensitive to parameter inhomogeneities between cells. If
cells receive different input drives then synchronization can be
destroyed (Wang & Buzsaki, 1996). Gamma oscillations that are
resistant to such inhomogeneities, however, can be generated
with ING oscillators having strong rather than weak synapses, fast
rather than slow synapses, and with inhibition that is shunting (i.e.,
vetoing any excitatory input) rather than merely hyperpolarizing
(Bartos et al., 2007). In mammalian neocortex the fastest synapses
exist in the form of gap junctions between layer 4 inhibitory
interneurons. These junctions promote synchronization without
changing network frequency (Bartos et al., 2007).
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