
Neural Networks 28 (2012) 24–39

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Evolving neural fields for problems with large input and output spaces
Benjamin Inden a,d,∗, Yaochu Jin b, Robert Haschke c, Helge Ritter c
a Research Institute for Cognition and Robotics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
b Department of Computing, University of Surrey, United Kingdom
c Neuroinformatics Group, Bielefeld University, Germany
d Artificial Intelligence Group, Bielefeld University, Germany

a r t i c l e i n f o

Article history:
Received 12 November 2010
Received in revised form 17 November
2011
Accepted 7 January 2012

Keywords:
Neuroevolution
Indirect encoding
Artificial life
NEAT

a b s t r a c t

We have developed an extension of the NEAT neuroevolution method, called NEATfields, to solve
problems with large input and output spaces. The NEATfields method is a multilevel neuroevolution
method using externally specified design patterns. Its networks have three levels of architecture. The
highest level is a NEAT-like network of neural fields. The intermediate level is a field of identical
subnetworks, called field elements, with a two-dimensional topology. The lowest level is a NEAT-like
subnetwork of neurons. The topology and connection weights of these networks are evolved with
methods derived from the NEAT method. Evolution is provided with further design patterns to enable
information flow between field elements, to dehomogenize neural fields, and to enable detection of
local features. We show that the NEATfields method can solve a number of high dimensional pattern
recognition and control problems, provide conceptual and empirical comparison with the state of the art
HyperNEAT method, and evaluate the benefits of different design patterns.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Evolving artificial neural networks

Artificial neural networks are computational models of animal
nervous systems and have found a wide range of successful ap-
plications, such as system control and image processing. Due to
their nonlinear nature it is often difficult tomanually design neural
networks for a specific task. To this end, evolutionary algorithms
have been widely used for automatic design of neural networks
(Floreano, Dürr, & Mattiussi, 2008; Yao, 1999). An important ad-
vantage of designing neural networks with evolutionary algo-
rithms is that both weights and topology of the neural networks
can be optimized. However, if the network topology is changed
by evolution, a number of problems can arise that have to be
addressed.

One problem is how to add new neurons or connections to a
neural networkwithout fully disrupting the function that it already
performs. Of course, new elements that are added to the network

∗ Corresponding author at: Research Institute for Cognition and Robotics,
Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany. Tel.: +49 0 521
106 12107; fax: +49 0 521 106 6011.

E-mail addresses: binden@techfak.uni-bielefeld.de,
binden@cor-lab.uni-bielefeld.de (B. Inden), yaochu.jin@surrey.ac.uk (Y. Jin),
rhaschke@techfak.uni-bielefeld.de (R. Haschke), helge@techfak.uni-bielefeld.de
(H. Ritter).

should change its function to some degree because if there is no
change at all, elements without any function could accumulate
over the course of evolution, and the networks would become too
large. This problem is known as the ‘‘bloat’’ problem in the genetic
programming literature (Poli, Langdon, & McPhee, 2008). Another
problem is that most evolutionary algorithms use a recombination
operator to obtain the benefits that sexual reproduction provides
to evolution. Ideally, recombination could combine the good
features of two organisms in their offspring. However, it is not
obvious what constitutes a ‘‘feature’’ in a neural network with an
arbitrary topology, or how corresponding features in two neural
networks with different topologies can be found. Similar problems
exist for genomes of variable lengths in general. As discussed in
the next section, the already well known NEAT method employs
techniques that solve these problems satisfactorily. OurNEATfields
method makes use of the same techniques.

Another challenge in evolving neural networks is the scalability
issue: the evolution of solutions for tasks of a large dimension.
This problem has not been addressed by the NEAT method,
which typically evolves neural networks of, say, 1–50 neurons.
The problem is particularly serious if, like in NEAT, a direct
encoding scheme is used for representing the neural network
because if every connection weight is directly encoded in the
genome, the length of the genome grows linearly with the
number of connections. However, the performance of evolutionary
algorithms degrades with increasing genome size.

In contrast, indirect encoding of neural networks (Du & Swamy,
2006; Yao, 1999), in which the weights and topologies are

0893-6080/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2012.01.001

http://dx.doi.org/10.1016/j.neunet.2012.01.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:binden@techfak.uni-bielefeld.de
mailto:binden@cor-lab.uni-bielefeld.de
mailto:yaochu.jin@surrey.ac.uk
mailto:rhaschke@techfak.uni-bielefeld.de
mailto:helge@techfak.uni-bielefeld.de
http://dx.doi.org/10.1016/j.neunet.2012.01.001


B. Inden et al. / Neural Networks 28 (2012) 24–39 25

generated using grammatical rewriting rules, grammar trees, or
other methods, can achieve a sublinear relationship between the
genome size and the network size. These methods basically use
a domain specific decompression algorithm in order to make a
large phenotype from a small genotype. Typically, the class of
encodable phenotypes is biased towards phenotypes that possess
some kind of regularity (Lipson, 2004), i.e., some identically
or similarly repeated structures. Indeed many neural networks,
whether occurring in nature or in technical applications, possess
repeated elements. For example, the cerebral cortex is organized
into columns of similar structure (Mountcastle, 1997). Brain areas
concerned with visual processing contain manymodules, in which
similar processing of local features is done for different regions of
the field of view in parallel. This occurs in brain regions whose
spatial arrangement preserves the topology of the input (Bear,
Paradiso, & Connors, 2006).

A particular kind of indirect encoding methods apply artificial
embryogeny to neuroevolution (Harding & Banzhaf, 2008; Stanley
& Miikkulainen, 2003). These methods are mainly inspired by
biological mechanisms in morphological and neural development
such as cell growth, cell division, and cell migration under the
control of genetic regulatory networks. By using abstractions of
these processes, large neural networks can be built from small
genomes.

Here we explore whether a very different kind of indirect
encoding, i.e., amultilevel neuroevolutionmethod using externally
specified design patterns, can solve the scalability problem. The
next two subsections discuss the NEAT method, on which our
recently introduced NEATfields method (Inden, Jin, Haschke, &
Ritter, 2010) is based, and present the general approach of
NEATfields. In Section 2, the technical details of the method
are explained. Sections 3 and 4 present experiments on using
NEATfields for problems with large input and output spaces.
Section 5 compares NEATfields to some other indirect encoding
methods used for neuroevolution, and explains why the method
is a good choice for many problem domains.

1.2. The NEAT neuroevolution method and derivatives

The NEAT method (Stanley, 2004; Stanley & Miikkulainen,
2002) is a well known and competitive neuroevolution method
that introduces a number of ideas to successfully deal with the
problems discussed in the previous section. One idea is to give
genes an unchanging identity. This is achieved by assigning a
globally unique reference number to each gene once it is generated
by mutation. These numbers are used to make recombination
of neural networks effective. Similar to recombination in nature,
recombination in NEAT starts by aligning genomes such that
corresponding genes on the two genomes match. Two genes
correspond to each other if they have the same reference number.
After the alignment is done, the offspring gets exactly one copy of
each gene that is present in both parents. For genes that are present
in one parent only, other rules are specified (not necessarily the
same in all NEAT implementations) to ensure that the offspring is
viable with a high probability.

Another idea introduced by NEAT is to protect innovation that
may arise during evolution through a speciation technique. For
example, if a network with a larger topology arises by mutation,
initially it may not be able to compete against networks with
a smaller topology that are at a local optimum of the fitness
landscape. By using the globally unique reference numbers again, a
distance measure between two genomes can be defined and used
to partition the population into species. The number of offspring
assigned to a species is proportional to its mean fitness. This
rather weak selection pressure prevents a slightly superior species
from taking over the whole population, and enables innovative yet

currently inferior solutions to survive. In contrast, the selection
pressure between members of the same species is much stronger
in NEAT. Recombination is usually only allowed to occur within a
species, such that parents look rather similar to each other and the
offspring looks similar to its parents.

Another feature of NEAT is that evolution starts with the sim-
plest possible network topology and proceeds by complexification,
that is by adding neurons and connections. Itmakes sense to search
for solutions with a small topology first because the size of the
search space for connection weights increases with the network
size. There is a mutation operator that adds neurons only between
two connected neurons, and adjusts the connection weights such
that the properties of these connections change as little as possi-
ble. This alleviates the problem of disrupting the existing function
of a network.

Due to the success of the NEAT method, quite a few derivatives
have been developed. The goal of these has often been to evolve
larger networks than those evolved by NEAT, and/or combine
the power of NEAT, which uses a direct encoding of connection
weights, with ideas from artificial embryogeny. For example
Reisinger, Stanley, and Miikkulainen (2004) used NEAT networks
as modules and co-evolved them with blueprints. Blueprints are
lists of modules, together with specifications on how to map
module inputs and outputs on network inputs and outputs. In
theMBEANNmethod (Ohkura, Yasuda, Kawamatsu, Matsumura, &
Ueda, 2007), explicitmodularity is introduced intoNEAT networks.
In the initial network, all neurons are in a first module m0. A new
module is created every time a neuron is added that connects
to at least one element in m0. New connections are established
either within a given module or between a given module and m0.
In yet another approach, sets of rules are evolved with NEAT-like
speciation that implicitly define a neural network (Reisinger &
Miikkulainen, 2007).

In HyperNEAT (D’Ambrosio & Stanley, 2007; Gauci & Stanley,
2007; Stanley, D’Ambrosio, & Gauci, 2009), neurons are embedded
into a substrate that has an externally specified topology. For
example, the substrate can be a two-dimensional plane. The
placement of neurons is determined by the geometry of the
given task, as well as some choices made by the user based on
previous experience, while the connection weights are generated
by giving neuron coordinates as input to another network, which
is termed a ‘‘compositional pattern producing network’’ (Stanley,
2007) and evolved according to a slightly extended NEAT method.
HyperNEATnetworks can be very large andhave shown impressive
scaling ability. In the NEON method (Inden, 2008), NEAT mutation
operators are used as developmental operators, and a gene can
encode arbitrary numbers of operations by referring to an external
data pool. However, with the exception of HyperNEAT, these
derivative methods have not been used widely, nor have they
been used to evolve very large neural networks. We will compare
HyperNEAT and a few other recent approaches to evolve large
neural networks with NEATfields in Section 5.

1.3. NEATfields: goals and approach

Two considerations provide the motivation for the NEATfields
method. The first starts with the notion that in order to make a
neural network compute a given function, evolution often needs
to change connection weights. In a direct encoding, the problem
of changing a connection weight has a simple unimodal fitness
landscape as far as the mapping from genotype to phenotype is
concerned. In indirect encodings, connection weights are usually
calculated using an explicitly or implicitly defined nonlinear
function (e.g. the compositional pattern producing network in
HyperNEAT). This function will often introduce local optima
into the fitness landscape of the weight changing problem, and



Download	English	Version:

https://daneshyari.com/en/article/6863515

Download	Persian	Version:

https://daneshyari.com/article/6863515

Daneshyari.com

https://daneshyari.com/en/article/6863515
https://daneshyari.com/article/6863515
https://daneshyari.com/

