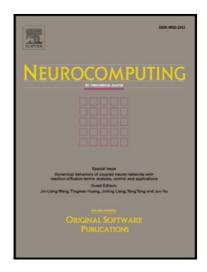
Accepted Manuscript

Stochastic linear quadratic optimal control for model-free discrete-time systems based on Q-learning algorithm

Tao Wang, Huaguang Zhang, Yanhong Luo


PII: S0925-2312(18)30438-7

DOI: 10.1016/j.neucom.2018.04.018

Reference: NEUCOM 19471

To appear in: Neurocomputing

Received date: 2 October 2017 Revised date: 26 January 2018 Accepted date: 8 April 2018

Please cite this article as: Tao Wang, Huaguang Zhang, Yanhong Luo, Stochastic linear quadratic optimal control for model-free discrete-time systems based on Q-learning algorithm, *Neurocomputing* (2018), doi: 10.1016/j.neucom.2018.04.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Stochastic linear quadratic optimal control for model-free discrete-time systems based on Q-learning algorithm *

Tao Wang^{a,b}, Huaguang Zhang^a, Yanhong Luo^a

^aSchool of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, 110004, PR China

^bDepartment of Computer and Mathematics Teaching, Shenyang Normal University, Shenyang, Liaoning, 110034, PR China

Abstract

Solving the stochastic linear quadratic (SLQ) optimal control problem generally needs full information about system dynamics. In this paper, a Q-learning iteration algorithm is adopted to solve the control problem for model-free discrete-time systems. Firstly, the condition of the well-posedness for the SLQ problem is given. In order to solve the SLQ problem, the stochastic problem is transformed into the deterministic one. Secondly, in the iteration process of Q-learning algorithm, the *H* matrix sequence and control gain matrix sequence are obtained without the knowledge of system parameters, and the convergence proof of two sequences is also given. Lastly, two simulation examples are supplied to explain the effectiveness of the Q-learning algorithm.

Keywords: Q-learning; H matrix; stochastic linear quadratic optimal control; stochastic algebra equation; well-posedness.

1. Introduction

The stochastic optimization problem has been a research focus in modern control field, which has attracted extensive attention [1-6]. It is well known that the feasibility of the stochastic linear quadratic (SLQ) optimal control problem is equivalent to the solvability of the stochastic algebra equation (SAE) [7-9]. Due

[☆]This work was supported by the National Natural Science Foundation of China (61433004) and the National Natural Science Foundation of China (61703289)

Download English Version:

https://daneshyari.com/en/article/6863525

Download Persian Version:

https://daneshyari.com/article/6863525

<u>Daneshyari.com</u>