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a b s t r a c t 

Despite the great successes of deep learning, the effectiveness of deep neural networks, such as 

LSTM/GRU-like recurrent networks, has not been well understood. Not only attributed to their nonlinear 

dynamics, the difficulty in understanding LSTM/GRU-like recurrent networks also resides in the highly 

complex recurrence structure in these networks. This work aims at constructing an alternative recurrent 

unit that is as simple as possible and yet also captures the key components of LSTM/GRU recurrent units. 

Such a unit, if available, can then be used as a prototype for the study of LSTM/GRU-like networks and 

potentially enable easier analysis. Towards that goal, we take a system-theoretic perspective to design a 

new recurrent unit, which we call the prototypical recurrent unit (PRU). Not only having minimal com- 

plexity, PRU is demonstrated experimentally to have comparable performance to GRU and LSTM over a 

range of modelling tasks. This establishes PRU networks as a prototypical example for future study of 

LSTM/GRU-like recurrent networks. The complexity advantage of PRU may also make it a favourable al- 

ternative to LSTM and GRU in practice. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Deep learning has demonstrated great power in the recent 

years and appears to have prevailed in a broad spectrum of ap- 

plication domains (see, e.g., [12,17] ). Despite its successes, the ef- 

fectiveness of deep neural networks has not been understood at 

a theoretical depth. Thus developing novel analytic tools and the- 

oretical frameworks for studying deep neural networks is of the 

greatest importance at the present time, and is anticipated to be a 

central subject of machine learning research in the years to come. 

This work is motivated by the thrust of understanding re- 

current neural networks, particularly LSTM/GRU-like networks 

[4,8,9,13,20] . These networks are demonstrated as the state-of-the- 

art models for time series or sequence data [1,10,22] . Recently 

LSTM/GRU recurrent units have also been successfully adopted for 

modelling other forms of data (e.g., [3,23] ). Despite these suc- 

cesses, the design of LSTM and GRU recurrent units was in fact 

heuristical; to date there is little theoretical analysis justifying 

their effectiveness. A particularly interesting observation regarding 

these networks is that they appear to possess “long-term mem- 

ory”, namely, being able to selectively “remember” the information 

from many time steps ago [7] . As one may naturally expect such 

memorization capability to have played an important role in the 
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working of these networks, this aspect has not been well studied, 

analytically or experimentally. 

The difficulty in analyzing recurrent networks resides in the 

complex structure of the recurrent unit, which induces highly com- 

plex nonlinear dynamics. To understand LSTM-like recurrent net- 

works, the methodology explored in this research is to maximally 

simplify the structure of the recurrent unit. That is, we wish to 

construct an alternative recurrent unit that captures the key com- 

ponents LSTM and GRU but stays as simple as possible. Such a unit 

can then be used for the study of recurrent networks and its struc- 

tural simplicity may allow easier analysis in future research. 

Towards that goal, the main objective of this present paper is 

to design such a recurrent unit and verify that this unit performs 

comparably to LSTM and GRU. To that end, we develop a new re- 

current unit, which we call the Prototypical Recurrent Unit (PRU). 

We rationalize our design methodology from a system-theoretic 

perspective where a recurrent unit is understood as a causal time- 

invariant system in state-space representations. Insights from pre- 

vious research suggest that additive evolution appear essential for 

LSTM-like networks to avoid the “gradient-vanishing” problem un- 

der back-propagation [5,14,18] . This understanding is also exploited 

in our design of PRU. 

The performance of PRU is verified and compared against LSTM 

and GRU via extensive experiments. Using these three kinds of re- 

current unit, we not only experiment on constructing a standard 

language model for character prediction [19] , but also test the re- 

current units for two controlled learning tasks, the Adding Problem 
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[13] , and the Memorization Problem. The latter problem is what 

we propose in this work specifically for studying the memoriza- 

tion capability of the recurrent networks. All experimental results 

confirm that PRU performs comparably to LSTM and GRU, achiev- 

ing the purpose of this paper. 

As another contribution, our experiments in this work demon- 

strate that the intrinsic memorization capability of the recurrent 

units depends critically on the dimension of the state space. The 

amount of targeted information (for memorization), the duration 

of memory, and the intensity of the interfering signal also directly 

impact the memorization performance. 

Finally it is perhaps worth noting that although PRU is designed 

to be a prototype which hopefully allows for easier analysis in fu- 

ture research, our experiments suggest that it can also be used as 

a practical alternative to LSTM and GRU. A particular advantage of 

PRU is its time complexity. In this metric, PRU is arguably superior 

to both LSTM and GRU. 

2. State-space representations 

In system theory [15] , a (discrete-time) system can be under- 

stood as any physical or conceptual device that responds to an in- 

put sequence x 1 , x 2 , . . . and generates an output sequence y 1 , y 2 , . . . , 

where the indices of the sequences are discrete time. In general, 

each x t and each y t at any time t may be a vector of arbitrary di- 

mensions. We will then use X and Y to denote the vector spaces 

from which x t and y t take value respectively. We will call X the 

input space and Y the output space . The behaviour of the system is 

characterized by a function J that maps the space of all input se- 

quences to the space of all output sequences. Then two systems J 

and J ′ are equivalent if J and J ′ are identical as functions. 

The class of systems that are of primary interest are causal sys- 

tems, namely those in which the output y t at each time t is inde- 

pendent of all future inputs x t+1 , x t+2 , . . . . The grand idea in system 

theory is arguably the introduction of the notion of state to causal 

systems [15] . This makes state-space models the central topic in 

system theory, resulting in wide and profound impact on system 

analysis and design. In a nutshell, a state is an quantity internal to 

the system, serving as a complete summary of all past inputs so 

that given the current state, the current and future outputs are inde- 

pendent of all past inputs . 

In this perspective, a recurrent unit can be regarded precisely 

as a causal time-invariant system in a state-space representation. 

We now formalize such a state-space representations. 

At each time instant t , in addition to the input variable x t and 

output variable y t , the representation of a recurrent unit also con- 

tains a state variable s t , taking values in a vector space S, which 

will be referred to as the state space . Before the system is excited 

by the input, or at time t = 0 , it is assumed that the state variable 

s 0 takes certain initial configuration, which is assumed customarily 

to be the origin 0 ∈ S . 

The behaviour of the recurrent unit is governed by two func- 

tions F : X × S → S and G : X × S → Y as follows. At each time in- 

stant t , function F maps the current input x t and the previous state 

s t−1 to the current state s t , namely, via 

s t = F (x t , s t−1 ) , (1) 

and function G maps the current input x t and the current state s t 
to the current output y t , namely, via 

y t = G (x t , s t ) . (2) 

That is, in general a recurrent unit can be specified by the tuple 

(X , Y, S, F , G ) according to (1) and (2) . We call such specification 

of the recurrent unit Type-I state-space representation of the unit, 

and denote it by (X , Y, S, F , G ) I . 

Fig. 1. A recurrent network(top) and the dependency structure of variables in Type- 

I representation (middle) and Type-II representation (bottom). 

It is remarkable that Type-I state-space representation is 

generic for any causal time-invariant system and hence generic for 

any recurrent unit. To illustrate this, we take the LSTM network as 

an example. 

The standard formulation of the LSTM network is given by the 

following equations: 

i t = σ (W i [ c t−1 , h t−1 , x t ] + b i ) (3) 

f t = σ (W f [ c t−1 , h t−1 , x t ] + b f ) (4) 

o t = σ (W o [ c t−1 , h t−1 , x t ] + b o ) (5) 

˜ c t = tanh (W c [ h t−1 , x t ] + b g ) (6) 

c t = i t � ˜ c t + f t � c t−1 (7) 

h t = o t � tanh (c t ) (8) 

where � is the element-wise product. In these equations, if we 

take ( c t , h t ) as state s t , and h t as y t , Eqs. (3–7) can be expressed as 

Eq. (1) , and Eqs. (5) and (8) can be expressed as Eq. (2) . We then 

arrive at a Type-I representation. It is also easy to verify that the 

recurrent unit in RNN [6] and GRU networks can all be expressed 

this way. 

As a clarification which might be necessary for the remainder 

of this paper, we pause to remark that in this paper (and un- 

der a system-theoretic perspective), the notion of a recurrent unit 

and that of a recurrent (neural) network are synonyms. In par- 

ticular, a recurrent unit that operates over n time instances may 

be viewed as n copies of the same recurrent unit connected in a 

chain-structured network as shown in Fig. 1 (top). In this “time- 

unfolded” view, the dependency structure between the variables 

in Type-I representation is shown in Fig. 1 (middle). 

Since we aim at designing a simpler recurrent unit, we now 

introduce another simpler representation, which we call Type-II 
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