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a b s t r a c t 

In this paper, we propose a set of allocation strategies to deal with the multi-armed bandit problem, 

the possibilistic reward (PR) methods. First, we use possibilistic reward distributions to model the uncer- 

tainty about the expected rewards from the arm, derived from a set of infinite confidence intervals nested 

around the expected value. Depending on the inequality used to compute the confidence intervals, there 

are three possible PR methods with different f eatures. Next, we use a pignistic probability transformation to 

convert these possibilistic functions into probability distributions following the insufficient reason princi- 

ple . Finally, Thompson sampling techniques are used to identify the arm with the higher expected reward 

and play that arm. A numerical study analyses the performance of the proposed methods with respect 

to other policies in the literature. Two PR methods perform well in all representative scenarios under 

consideration, and are the best allocation strategies if truncated poisson or exponential distributions in 

[0,10] are considered for the arms. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The name bandit comes from imagining a gambler playing with 

K slot machines. The gambler can pull the arm of any of the ma- 

chines, which produces a reward payoff. The multi-armed bandit 

problem has been at great depth studied in statistics [10] , becoming 

fundamental in different areas of economics, statistics or artificial 

intelligence [3,22,26,33,35] . 

A K -armed bandit problem can be defined by random variables 

X i, n for 1 ≤ i ≤ K and n ≥ 1, where each i is the index of an arm of 

a bandit and n refers to the round of play. Successive plays of arm 

i yield rewards X i, 1 , X i, 2 , . . . which are independent and identically 

distributed according to an unknown law with unknown expecta- 

tion μi . Other variants of the multi-armed bandit problem (bandits 

with side information, bandits with no stochastic rewards, bandits 

with a budgeted cost allocations...) can be found in the literature, 

see for example [11,28,29,36,37] . 

A policy , or allocation strategy, A , is an algorithm that chooses 

the next arm to play based on the sequence of previous plays and 

obtained rewards. 

The goal is to maximize the sum of the rewards received, or 

equivalently, to minimize the regret, which is defined as the loss 
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compared to the total reward that can be achieved given full 

knowledge of the problem. The regret of A after n plays can be 

computed as 

μ∗n −
K ∑ 

i =1 

μi E[ n i ] , where μ∗ = max 
1 ≤i ≤K 

{ μi } , 

E [ · ] denotes expectation and n i is the number of times arm i has 

been played by A during the first n plays. 

As pointed out in [18] , two families of bandit settings can be 

distinguished. In the first, the distribution of X it is assumed to be- 

long to a family of probability distributions { p θ , θ ∈ �i }, whereas 

in the second, the rewards are only assumed to be bounded (say, 

between 0 and 1), and policies rely directly on the estimates of the 

expected rewards for each arm. 

Almost all the policies or allocation strategies in the literature 

focus on the first family and they can be separated, as cited in [24] , 

in two distinct approaches: the frequentist view and the Bayesian 

approach. In the frequentist view , the expected mean rewards cor- 

responding to all arms are considered as unknown determinis- 

tic quantities and the goal of the algorithm is to reach the best 

parameter-dependent performance. 

Lai and Robbins [27] first constructed a theoretical framework 

for determining optimal policies. For specific families of reward 

distributions, they found that the optimal arm is played exponen- 

tially more often than any other arm, at least asymptotically. They 

also proved that this regret is the best one. 

These policies work by associating a quantity called upper con- 

fidence index to each arm , which relies on the entire sequence of 
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Fig. 1. Possibilistic rewards distributions in PR-1. 

Fig. 2. Pignistic probability transformation examples for PR-1. 

rewards obtained so far from a given arm. Burnetas and Katehakis 

[12] proposed an extension to multiparameter or non-parametric 

models that facilitated the computation of the upper confidence in- 

dex . 

Later, Agrawal [1] introduced a generic class of index policies 

termed upper confidence bounds (UCB), where the index can be ex- 

pressed as simple function of the total reward obtained so far from 

the arm. These policies are thus much easier to compute than Lai 

and Robbins’, yet their regret retains the optimal logarithmic be- 

havior. 

From then, different policies based on UCB can be found in 

the literature. First, Auer et al. [6] strengthen previous results by 

showing simple to implement and computationally efficient poli- 

cies (UCB1, UCB2 and UCB-Tuned) that achieve logarithmic regret 

uniformly over time, rather than only asymptotically. 

Later, Audibert et al. [5] proposed the UCB-V policy, which uses 

an empirical version of the Bernshtein bound to obtain refined 

upper confidence bounds. In [7] the UCB method of Auer et al. 

[6] was modified, leading to the improved-UCB method, whereas 

an improved UCB1 algorithm, MOSS, was proposed by Audibert & 

Bubeck [4] , which achieved the distribution-free optimal rate while 

still having a distribution-dependent rate logarithmic in the num- 

ber of plays. 

Another class of policies under the frequentist perspective are 

the Kullback–Leibler (KL)-based algorithms, including DMED, K inf , 

KL-UCB and kl-UCB. 

The deterministic minimum empirical divergence (DMED) policy 

was proposed by Honda & Takemura [23] motivated by a Bayesian 

viewpoint for the problem (although a Bayesian framework is not 

used for theoretical analyses). 

In [30] , the K inf -based algorithm was analyzed by Maillard et al. 

It is inspired by the ones studied in [12,27] , taking also into ac- 

count the full empirical distribution of the observed rewards. Later, 

the KL-UCB algorithm and its variant KL-UCB+ were introduced 

by Garivier & Cappé [18] . KL-UCB satisfied a uniformly better re- 

gret bound than UCB and its variants for arbitrary bounded re- 

wards, whereas it reached the lower bound of Lai and Robbins 

when Bernoulli rewards are considered. 

New algorithms were proposed by Cappé et al. [13] based on 

upper confidence bounds of the arm rewards computed using dif- 

ferent divergence functions. The kl-UCB uses the Kullback–Leibler 

divergence; whereas the kl-poisson-UCB and the kl-exp-UCB ac- 

count for families of poisson and exponential distributions, respec- 

tively. 

Finally, the BESA algorithm was proposed by Baransi et al. [8] . 

It is not based on the computation of an empirical confidence 

bounds, nor can it be classified as a KL-based algorithm. BESA is 

fully non-parametric. 

Stochastic bandit problems have been analyzed from a Bayesian 

perspective , i.e. the parameter is drawn from a prior distribu- 

tion instead of considering a deterministic unknown quantity. The 

Bayesian performance is then defined as the average performance 

over all possible problem instances weighted by the prior on the 

parameters. 

The origin of this perspective is in the work by Gittins [19,20] . 

Gittins’ index based policies are a family of Bayesian-optimal poli- 

cies based on indices that fully characterize each arm given the 

current history of the game, and at each time step the arm with 

the highest index will be pulled. In [25] , Gittins’ indices for the 

arms a related to ladder variables for associated random walks. 

Another family of algorithms to solve bandit problems is the 

so-called Thompson sampling (TS), consisting of randomly drawing 

each arm according to its probability of being optimal. The algo- 

rithm assumes that the arms’ distributions belong to a parametric 

family of distributions P = { p(. | θ ) , θ ∈ �} where �⊆R , it starts by 

putting a prior distribution on each one of the arms parameters, 

and at each time step a posterior distribution is maintained ac- 

cording to the rewards observed so far. 

Finally, Bayes-UCB was proposed by Kaufmann et al. [24] in- 

spired by the Bayesian interpretation of the problem but retaining 

the simplicity of UCB-like algorithms. 

Table 1 shows the main features of the allocation strategies 

mentioned throughout this section. Regret bound refers to whether 

or not there is a theoretical analysis proving a regret bound, Op- 

timality points out if there is a reward distribution whose perfor- 

mance is optimal or near optimal, Parametric refers to whether the 

reward distribution family (Bernoulli, exponential, Gaussian...) or 

only the upper and lower bound values have to be specified, De- 

layed denotes whether or not there are experiments testing strat- 

egy performance for delayed reward in the literature, and Complex- 

ity refers to the computational resources needed to compute the 

next action. 

In this paper, we propose possibilistic reward (PR) methods. 

PR methods combine the best of upper confidence index poli- 

cies, where the only available information about the reward dis- 

tributions is that they are bounded, and the best of Thompson 
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