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Abstract 

Recently, multilayer extreme learning machine (ML-ELM) and hierarchical 

extreme learning machine (H-ELM) were developed for representation learning 

whose training time can be reduced from hours to seconds compared to traditional 

stacked autoencoder (SAE). However, there are three practical issues in ML-ELM and 

H-ELM: 1) the random projection in every layer leads to unstable and suboptimal 

performance; 2) the manual tuning of the number of hidden nodes in every layer is 

time-consuming; and 3) under large hidden layer, the training time becomes relatively 

slow and a large storage is necessary. More recently, issues (1) and (2) have been 

resolved by kernel method, namely, multilayer kernel ELM (ML-KELM), which 

encodes the hidden layer in form of a kernel matrix (computed by using kernel 

function on the input data), but the storage and computation issues for kernel matrix 

pose a big challenge in large-scale application. In this paper, we empirically show that 

these issues can be alleviated by encoding the hidden layer in the form of an 

approximate empirical kernel map (EKM) computed from low-rank approximation of 

the kernel matrix. This proposed method is called ML-EKM-ELM, whose 

contributions are: 1) stable and better performance is achieved under no random 

projection mechanism; 2) the exhaustive manual tuning on the number of hidden 

nodes in every layer is eliminated; 3) EKM is scalable and produces a much smaller 

hidden layer for fast training and low memory storage, thereby suitable for large-scale 

problems. Experimental results on benchmark datasets demonstrated the effectiveness 

of the proposed ML-EKM-ELM. As an illustrative example, on the NORB dataset, 

ML-EKM-ELM can be respectively up to 16 times and 37 times faster than 

ML-KELM for training and testing with a little loss of accuracy of 0.35%, while the 

memory storage can be reduced up to 1/9.  

 

 

Index Terms: Kernel learning, Multilayer extreme learning machine (ML-ELM), 

Empirical kernel map (EKM), Representation learning, stacked autoencoder (SAE). 

 

 

 

1. Introduction  

Autoencoder (AE) is an unsupervised neural network whose input layer is equal to 
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