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a b s t r a c t 

In this paper, we propose a General Non-negative Matrix Factorization based on the left Semi-Tensor 

Product (lGNMF) and the General Non-negative Matrix Factorization based on the right Semi-Tensor Prod- 

uct (rGNMF), which factorize an input non-negative matrix into two non-negative matrices of lower ranks 

based on gradient method. In particular, the proposed models are able to remove the dimension match- 

ing constraints required by conventional NMF models. Both theoretical derivation and experimental re- 

sults show that the conventional NMF is a special case of the proposed lGNMF and rGNMF. We find the 

method for the best efficacy of the image restoration in lGNMF and rGNMF by experiments on baboon 

and lenna images. Moreover, inspired by the Incremental Non-negative Matrix Factorization (INMF), we 

propose the Incremental lGNMF (IlGNMF) and Incremental rGNMF (IrGNMF), We also conduct the ex- 

periments on JAFFE database and ORL database, and find that IlGNMF and IrGNMF realize saving storage 

space and reducing computation time in incremental facial training. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Face recognition technology has attracted many attentions due 

to its broad applications on security systems, user authentications, 

smart phone unlocking, etc. With the continuous improvement of 

image resolution and the prevalence of web cameras and smart 

phones, a vast amount of high resolution facial images has been 

generated every day, resulting in massive storage space and high 

computational complexity. There is an increasing demand for fa- 

cial recognition models that can dynamically adopt large scale 

data through online training while requiring less storage space and 

computational time. 

There is psychological [1] and physiological [2,3] evidences for 

parts-based representations in the brain, and certain computa- 

tional theories of object recognition are relying on such represen- 

tations [4,5] . But little is known about how brains or computers 

might learn the parts of objects. Non-negative matrix factorization 

(NMF) [6] , which factorizes an input non-negative matrix into two 

non-negative matrices of lower ranks and is able to learn parts of 

faces, has recently been adopted by many face recognition stud- 

ies [7,8] . However, conventional NMF are not specifically designed 
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to reduce storage space or computational complexity. In addition, 

it requires lots of computational efforts for model updates, mak- 

ing it very challenging to dynamically adopt new data samples 

through online training. Bucak and Gunsel [9] propose the incre- 

mental non-negative matrix factorization (INMF) method to over- 

come the difficulties that conventional NMF confronts in online 

processing of large scale data. 

Many later studies based on INMF are then proposed to further 

reduce the required storage space and computational complexity 

in various applications. For example, Zheng et al. [10] propose 

an incremental locality preserving nonnegative matrix factorization 

(ILPNMF) method to discover the manifold structure embedded in 

high-dimensional space that deals well with large scale data. Liu 

et al. [11] propose an online graph regularized non-negative ma- 

trix factorization for large-scale datasets. Yu et al. [12] propose 

an incremental graph regularized nonnegative matrix factoriza- 

tion (IGNMF) algorithm which imposes manifold into INMF to pre- 

serve the geometric structure in the data under incremental study 

framework, and proposed Batch-IGNMF algorithms (B-IGNMF) for 

implementing incremental study in batches. Zhou et al. [13] derive 

an INMF with volume constraints for solving online Blind Source 

Separation (BSS). 

Recently, online analysis or learning approaches about INMF 

had emerged. For example the incremental learning method. 

Rebhan et al. [14] propose an incremental learning method to 
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cover the (possibly growing) input space and to enable NMF to 

incrementally and continuously adopt new data. Amin and Mah- 

moudi [15] use INMF to learn a linear part-based subspace in an 

online fashion. Wang and Lu [16] propose an incremental orthog- 

onal projective non-negative matrix factorization algorithm (IOP- 

NMF) to learn a parts-based subspace that reveals dynamic data 

streams. 

INMF has also been used for visual tracking (object tracking). 

Qian et al. [17] propose an appearance model based on extended 

INMF for visual tracking. Dou et al. [18] propose an incremental 

discriminative projective non-negative matrix factorization for ro- 

bust visual tracking. Zhang et al. [19] propose a constrained INMF 

for visual tracking. Liu et al. [20] propose an incremental robust 

nonnegative matrix factorization (IRNMF) for object tracking. Dang 

et al. [21] propose the INMF with L-p sparse constraint for SAR 

target recognition. 

Inspired by INMF, we aim to propose an incremental general 

non-negative matrix factorization to further save storage space and 

improve computing performance. 

Our contributions are as follows: 

1. To save storage space, we propose the General Non-negative 

Matrix Factorization based on the left Semi-Tensor Product 

(lGNMF) and the General Non-negative Matrix Factorization 

based on the right Semi-Tensor Product (rGNMF) to factorize a 

matrix C ∈ R s ×t 
+ into basis images (or basis matrix) A ∈ R m ×n 

+ and 

coefficient matrix B ∈ R 
p×q 
+ , where, m = s/ (l/n ) and q = t/ (l/p) , 

the variable l is the least common product of n and p . 

2. Experiments on both baboon and lenna images are conducted 

to analyze the performance of the proposed lGNMF and rGNMF. 

3. Inspired by INMF, we further propose the Incremental lGNMF 

(IlGNMF) and Incremental rGNMF (IrGNMF), with the design 

goal as to make the above proposed lGNMF and rGNMF more 

suitable for dynamically adopting new data for online learning. 

4. Experiments on JAFFE database and ORL database are con- 

ducted to analyze the performance of the proposed IlGNMF and 

IrGNMF in incremental facial training. Experiment results show 

that compared to INMF, the proposed IlGNMF and IrGNMF can 

further reduce storage space and computation time for incre- 

mental facial training. 

The rest of this paper is organized as follows. Section 2 intro- 

duces conventional NMF, INMF and semi-tensor product of matri- 

ces. Section 3 presents lGNMF, rGNMF, IlGNMF and IrGNMF. Ex- 

periments on the performance of the proposed lGNMF and rGNMF 

are presented in Section 4 . Experiments on the performance of 

the proposed IlGNMF and IrGNMF are presented in Section 5 . 

Section 6 concludes the paper. 

2. Preliminaries 

2.1. Non-negative matrix factorization 

NMF factorizes an input non-negative matrix C ∈ R s × t into two 

non-negative matrices of lower ranks, which are A ∈ R s × p and 

B ∈ R p × t , such that 

C s ×t 
+ ≈ A 

s ×p 
+ B 

p×t 
+ . (1) 

In general, matrix A is known as the basis matrix, and matrix 

B is known as the coefficient matrix. Obviously, matrices A and B 

should meet the dimension matching condition that matrix A ’s col- 

umn number should equal to matrix B ’s row number. 

Generally, the loss function of NMF can be calculated by the Eu- 

clidean distance or the Kullback–Leibler divergence. When the loss 

function is determined by the Euclidean distance, the optimization 

function of NMF is given by 

L NMF (A, B ) = ‖ C − AB ‖ 

2 
F 

= 

s ∑ 

i =1 

t ∑ 

j=1 

[ C i j − (AB ) i j ] 
2 . (2) 

2.2. Incremental non-negative matrix factorization 

INMF [9] is proposed to make the online updating of NMF much 

more efficient when new data are available. Specifically, the sam- 

ple set C k is factorized into the basis matrix A k and the coefficient 

matrix B k using NMF, where k is the number of the current exis- 

tence sample set. Meanwhile, the optimization function of NMF is 

given by 

L NMF (A k , B k ) = ‖ C k − A k B k ‖ 

2 
F 

= 

s ∑ 

i =1 

t ∑ 

j=1 

[(C k ) i j − (A k B k ) i j ] 
2 . (3) 

When a new sample c k +1 is added, the sample set becomes 
C k +1 , at this moment, the optimization function of incremental 
NMF (INMF) is given by 

L INMF (A k +1 , B k +1 ) = ‖ C k +1 − A k +1 B k +1 ‖ 2 F 

≈
s ∑ 

i =1 

t ∑ 

j=1 

[(C k ) i j − (A k B k ) i j ] 
2 + 

s ∑ 

i =1 

[(c k +1 ) i − (A k +1 b k +1 ) i ] 
2 

= L NMF (A k , B k ) + L NMF (A k +1 , b k +1 ) . (4) 

When INMF is applied in the pattern recognition process, the 

change of basis matrix is not good for pattern recognition. Thus, 

when a new sample c k +1 is added, b k +1 can be obtained by 

b k +1 = ((A 

T 
k A k ) 

−1 A 

T 
k ) c k +1 , (5) 

where A 

T 
k 

is used to respect transpose of matrix A k , and (A 

T 
k 

A k ) 
−1 

is used to respect inverse of matrix (A 

T 
k 

A k ) . 

2.3. Semi-Tensor Product of matrices 

In this section, we provide some necessary preliminaries on the 

Semi-Tensor Product (STP) [22–24] of matrices. 

Definition 1. Given two matrices A ∈ R m × n and B ∈ R p × q , the vari- 

able l is the least common product of n and p . The left STP denoted 

by �, and 

A � B = (A � I l/n )(B � I l/p ) ∈ R 

(m ·l/n ) ×(l/p·q ) , (6) 

where � represents the right Kronecker product [25] . 

Definition 2. Given two matrices A ∈ R m × n and B ∈ R p × q , the vari- 

able l is the least common product of n and p . The right STP de- 

noted by �, and 

A � B = (I l/n � A )(I l/p � B ) ∈ R 

(m ·l/n ) ×(l/p·q ) , (7) 

Here are a few simple examples: 

Example 1. Let A = ( 4 −3 2 ) , B = ( 
−1 

2 
) , then 

A � B = 

((
4 −3 2 

)
� I 2 

)((
−1 

2 

)
� I 3 

)

= 

(
4 0 −3 0 2 0 

0 4 0 −3 0 2 

)
⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

−1 0 0 

0 −1 0 

0 0 −1 

2 0 0 

0 2 0 

0 0 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

(
−4 4 3 

−6 −4 4 

)
. 
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