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a b s t r a c t 

In this paper, our main goal is to solve optimal control problem by using reinforcement learning (RL) 

algorithm for marine surface vessel system with known dynamic. And this algorithm is an optimal control 

algorithm based on policy iteration (PI), and it can obtain the suitable approximations of cost function 

and the optimized control policy. There are two neural networks (NNs), where critic NN aims to estimate 

the cost-to-go and actor NN is utilized to design suitable input controller and minimize the tracking error. 

A novel tuning method is given for critic NN and actor NN. The stability and convergence are proven by 

Lyapunov’s direct method. Finally, the numerical simulations are conducted to demonstrate the feasibility 

and superiority of presented algorithm. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Recently, marine vessels have been used in various fields, for 

example, ocean exploration, marine transportation, etc. [1–7] . With 

the continuous development of society, the traditional control 

methods are unable to satisfy the growth in the marine trans- 

portation and the needs for modern navigation safety. In order to 

increase tracking accuracy, there are a lot of studies have been 

proposed with different control methods of marine surface vessels 

[2,8–13] . 

For marine surface vessel system, it is a difficult problem to en- 

sure the stability in the brutal environment. Therefore, there have 

been many researches presented in the last couple of years. For 

example, an adaptive robust tracking control law with finite-time 

for a fully actuated marine vessel with unknown interference is 

proposed in [8] . In [14] , a control law for trajectory tracking is 

proposed for the marine vessels system with state constraints and 

dynamics uncertainties. The authors present a control method of 
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tracking the desired trajectory for a fully actuated marine vessel in 

[11] . And a control problem of a variable length crane system is in- 

vestigated in [15] . In [10,16] , the authors propose the sliding-mode 

control method for a surface vessels system. 

In the mathematical view, the optimal control problem is equal 

to solve Hamilton–Jacobi–Bellman (HJB) equation. Because of the 

difficulty of nonlinear nature of the HJB equation, more and more 

researchers put effort into this field in order to solve this puz- 

zle. More achievements have presented the reasonable methods to 

cope with the discrete-time HJB equation. In [17,18] , many useful 

points about this problem have been given. 

Reinforcement learning is an approach to deal with the afore- 

said problem [18–23] . For a typical structure of reinforcement 

learning, there includes two neural networks, and the actor neu- 

ral network updates its output value based on the value of Critic 

Neural Network. These two neural networks must execute coordi- 

nately, and the ultimate target is to reach the global optimum of 

cost function. The authors provide an adaptive neural network con- 

trol by using RL algorithm for a robot manipulator systems with 

unknown functions and input dead-zone in [24] . In this paper, we 

propose a surface marine vessel by using reinforcement learning 

and prove its availability. 

In recent years, PI has been discussed in [25–31] . This method 

belongs to optimal learning for dealing with optimal control prob- 

lems. For the linear time-invariant system, it can reduce the prob- 
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lem of Kleinman algorithm to solve the Riccati function problem. 

It is the same as other reinforcement learning algorithms, PI is ap- 

plied on critic/actor neural networks which are used to approxi- 

mate the unknown parameters. In this paper, a method about syn- 

chronous policy iteration is investigated and it is inspired by PI 

[32] . This method is one of the generalized PI proposed in [33] . 

For the past few years, adaptive neural network has been ap- 

plied for the nonlinear systems broadly, and it can be learned to 

approximate solution of any nonlinear equations as long as the 

hidden layer with enough nodes [34–45] . In [46,47] , authors use 

NN to approximate the unknown system parameters. Two NNs are 

utilized to approximate the input deadzone and unknown system 

dynamics in [48] . In [49] , a novel Critic Neural Network controller 

is presented for nonlinear feedback systems, and the control de- 

sign is based on the predictor model. An adaptive neural network 

controller is presented to cope with the problem of system uncer- 

tainties [12,41,50–58] . An adaptive NN control method based on ra- 

dial basis function for nonlinear multiagent systems is investigated 

in [59] . In [60] , the authors employ an adaptive NN method for an 

underactuated wheeled inverted pendulum model. In [61] , a trajec- 

tory tracking control for marine vessel with full-state constraints 

and system unknown is designed. In the controller, an adaptive 

neural networks are used to compensate the dynamics uncertain- 

ties. To sum up, the NN is a more and more important technique 

and can be applied to many fields. 

In this paper, there are several main contributions. (i) The critic 

NN is designed to approach the optimal cost function of the ma- 

rine vessel system, and we tune the critic NN weights when an 

adoptable policy is specified. (ii) And an extra NN actor neural is 

proposed, and in standard policy iteration we adjust both NN syn- 

chronous in real time. (iii) RL is applied to control the position of a 

three degrees of freedom multiple-input–multiple-output (MIMO) 

marine vessel system, which has a good control effect. 

In what follows, Section 2 covers problem formulation that con- 

tains system modeling and some necessary lemmas, assumptions 

and properties. The two neural networks control design and stabil- 

ity analysis are shown in Section 3 . Next, the simulation is given 

to show the feasibility and effectiveness of our controller. At last, 

Section 5 concludes this paper. 

2. Problem formulation 

Some notations are proposed as follows, and we will use 

some symbols: R 

+ denotes a positive real number, R 

n is the n - 

dimensional Euclidean space, || · || is the norm of Euclidean vec- 

tor, | � | is the absolute value of a scalar � , ‖ � ‖ is the norm of 

vector � , that is ‖ � ‖ = 

√ 

� 

T � , and ‖ · ‖ 2 represents the matrix 

2-norm. 

2.1. System modeling 

In this paper, the dynamic of a marine surface vessel [1] is de- 

scribed as 

˙ η = J(η) υ

M ˙ υ + C(υ) υ + D (υ) υ + g(η) = u (1) 

where η = [ ηx , ηy , ηψ 

] T ∈ R 

3 denotes the earth-frame positions 

and heading, u ∈ R 

3 presents the control input of the systems, υ = 

[ υx , υy .υψ 

] T ∈ R 

3 presents the velocities of vessel in the vessel- 

frame. M ∈ R 

3 ×3 is a symmetric positive definite inertia matrix, 

C(υ) ∈ R 

3 ×3 denotes centripetal and Coriolis torques, D (υ) ∈ R 

3 ×3 

is the damping matrix, and g ( η) presents the restoring force, and 

J ( η) is the transformation matrix which is defined as 

J(η) = 

[ 

cos ηψ 

− sin ηψ 

0 

sin ηψ 

cos ηψ 

0 

0 0 1 

] 

(2) 

We can let x 1 = η, x 2 = υ, then we are able to get following 

description of our system: 

˙ x 1 = J(x 1 ) x 2 

˙ x 2 = M 

−1 [ u − C(x 2 ) x 2 − D (x 2 ) x 2 − g(x 1 )] (3) 

Then the vessel dynamical system is given by 

˙ x (t) = A (x (t)) + B (x (t )) u (x (t )) ; x (0) = x 0 (4) 

where 

˙ x (t) = 

[
˙ x 1 
˙ x 2 

]
, 

A (x (t)) = 

[
J(x 1 ) x 2 

M 

−1 [ −C(x 2 ) x 2 − D (x 2 ) x 2 − g(x 1 )] 

]
, 

B (x (t)) = 

[
0 3 ×3 

M 

−1 

]
(5) 

with 0 3 ×3 denoting 3 × 3 zero matrices. 

Assumption 1. [62] According to (4) , we can assume B ( x ) is 

bounded, and matrix B ( x ) has full column rank for all x ∈ R 

n , and 

we need to define B + = (B T B ) −1 B T is bounded and locally Lips- 

chitz. 

Assumption 2. [63] Let x d ( t ) be the bounded desired trajectory, 

and we can assume that there exists a Lipschitz continuous equa- 

tion f d (·) ∈ R 

n with f d (0) = 0 such that 

˙ x d (t) = f d (x d (t)) (6) 

Then denoting the tracking error as, 

e = x (t) − x d (t) (7) 

From (3), (6) and (7) , we can obtain the tracking error dynamics 

˙ e (t) = A (x (t)) + B (x (t )) u (x (t )) − f d (x d (t)) (8) 

The input controller u d corresponding to the desired trajectory 

x d is 

u d (x d ) = B 

+ (x d ) ̇ x d − A (x d ) (9) 

Therefore, we need to define a new state � ∈ R 

12 as 

� = [ e T , x T d ] 
T (10) 

According to (8) and Assumption 1 , we can obtain the derivative 

of (10) 

˙ � = E(� ) + F (� ) ν (11) 

where the functions E ∈ R 

12 , G ∈ R 

12 ×3 , and controller ν ∈ R 

3 , we 

have 

E(� ) = 

[
A (e + x d ) − f d (x d ) + B (e + x d ) u d 

f d ( x d ) 

]
, (12) 

F (� ) = 

[
B (e + x d ) 

0 

6 ×3 

]
, ν = u − u d (13) 

Assumption 3. [18] We can assume that, A (0) = 0 , A (x ) + B (x ) u is 

Lipschitz continuous on a set � ⊆ R 

6 which contains the origin, 

and the dynamics system achieves stability on �. That is, there 

exists a continuous control torque ν(t) ∈ U so that the system is 

asymptotically stable on �. On the other hand, we assume that 

the system parameters M , C(υ) , D (υ) , and g ( η) are all known. 
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