
Neurocomputing 307 (2018) 195–204

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Understanding adversarial training: Increasing local stability of

supervised models through robust optimization

Uri Shaham

a , ∗, Yutaro Yamada

b , Sahand Negahban

b

a Center for Outcome Research, Yale University, 200 Church st., New Haven, CT 06510, United States
b Department of Statistics, Yale University, 24 Hillhouse st., New Haven, CT 06511, United States

a r t i c l e i n f o

Article history:

Received 27 August 2017

Revised 2 April 2018

Accepted 6 April 2018

Available online 4 May 2018

Communicated by Dacheng Tao

Keywords:

Adversarial examples

Robust optimization

Non-parametric supervised models

Deep learning

a b s t r a c t

We show that adversarial training of supervised learning models is in fact a robust optimization pro-

cedure. To do this, we establish a general framework for increasing local stability of supervised learn-

ing models using robust optimization. The framework is general and broadly applicable to differen-

tiable non-parametric models, e.g., Artificial Neural Networks (ANNs). Using an alternating minimization-

maximization procedure, the loss of the model is minimized with respect to perturbed examples that are

generated at each parameter update, rather than with respect to the original training data. Our proposed

framework generalizes adversarial training, as well as previous approaches for increasing local stability of

ANNs. Experimental results reveal that our approach increases the robustness of the network to existing

adversarial examples, while making it harder to generate new ones. Furthermore, our algorithm improves

the accuracy of the networks also on the original test data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning models might be very unstable locally, and

have significantly different outputs on inputs which only slightly

differ from one another. This may be the case even for models with

high generalization ability (estimated by performance on test data).

For example, Szegedy et al. [34] , showed that highly performing vi-

sion ANNs mis-classify examples that have only barely perceivable

(by a human eye) differences from correctly classified examples.

Such examples are called adversarial examples , and although usu-

ally mentioned in the context of ANNs, they are not unique to this

model family.

Adversarial examples do not tend to exist naturally in training

and test data. Yet, the local instability manifested by their exis-

tence is disturbing, for several reasons. First, state-of-the-art mod-

els, including, for example, ANNs with super-human performance,

may assign examples which are indistinguishable in the natural

“human eye” metric to different classes, indicating that the mod-

els are far from learning the true class ‘concept’. Second, adversar-

ial examples can be generated in structured and automated ways.

Third, it has been shown that different models with different archi-

tectures which are trained on different training sets tend to mis-

∗ Corresponding author.

E-mail addresses: uri.shaham@yale.edu (U. Shaham), yutaro.yamada@yale.edu (Y.

Yamada), sahand.negahban@yale.edu (S. Negahban).

classify the same adversarial examples in a similar fashion. This

can be used to perform attacks on models by making them fail

easily and consistently [13] and poses serious security issues.

In recent years, the field of adversarial attacks and defenses has

become a highly active research area, primarily associated with

deep learning, and many attacks and defenses have been pro-

posed [41] . Improving robustness of neural nets to adversarial ex-

amples by adding such examples to the training data is arguably

among the first and fundamental defense techniques against ad-

versarial attacks, see, for example, [12,34] . We refer to the usage

of adversarial examples during training as “adversarial training”.

To the best of our knowledge, despite making intuitive sense and

yielding impressive empirical results, a more rigor mathematical

understanding of adversarial training is lacking. The goal of this

manuscript, which appeared in pre-print in 2015, is to provide a

framework that yields a full theoretical understanding of adversar-

ial training, as well as new optimization schemes, based on robust

optimization. Specifically, we show that generating and using ad-

versarial examples during training of supervised machine learning

models (and ANNs in particular) can be derived from the powerful

notion of robust optimization, which has many applications in ma-

chine learning and is closely related to regularization. We propose

a general algorithm for robustification of non-parametric machine

learning models, and show that it generalizes several previously

proposed approaches for training of ANNs.

Essentially, our algorithm increases the stability of supervised

models with respect to perturbations in the input data, through

https://doi.org/10.1016/j.neucom.2018.04.027

0925-2312/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.neucom.2018.04.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.04.027&domain=pdf
mailto:uri.shaham@yale.edu
mailto:yutaro.yamada@yale.edu
mailto:sahand.negahban@yale.edu
https://doi.org/10.1016/j.neucom.2018.04.027

196 U. Shaham et al. / Neurocomputing 307 (2018) 195–204

an iterative minimization-maximization procedure, in which the

network parameters are updated with respect to worst-case data,

rather than to the original training data. Furthermore, we show

connections between our method and existing methods for gener-

ating adversarial examples and adversarial training, demonstrating

that those methods are special instances of the robust optimiza-

tion framework. This point yields a principled connection high-

lighting the fact that the existing adversarial training methods aim

to robustify the parameter optimization process. The main applica-

tion we consider in this manuscript is training of ANNs, to which

our algorithm applies naturally and has an efficient implementa-

tion. Yet, the algorithm is general and can be applied to any non-

parametric supervised model that is trained using gradient-based

optimization.

The structure of this paper is as follows: in Section 2 we pro-

vide background on adversarial examples and robust optimization.

In Section 3, we present our training framework, some of its pos-

sible variants and its practical version. Experimental results on

ANNs and boosting models are given in Section 4 . Some related

works are mentioned in Section 5 . Section 6 briefly concludes this

manuscript.

2. Preliminaries

In this section, we provide elementary background on adversar-

ial examples and robust optimization, required to justify our pro-

posed approach.

2.1. Notation

We denote a labeled training set by { (x i , y i) } m

i =1
where x i ∈ R

d

is a set of features and y i ∈ { 1 , . . . , K} is a label. The loss of a

model with parameters θ on (x, y) is denoted by J (θ , x, y) and is

a function that quantifies the goodness-of-fit between the parame-

ters θ and the observations (x, y). When holding θ and y fixed and

viewing J (θ , x, y) as a function of x we occasionally write J θ , y (x).

�x ∈ R

d corresponds to a small additive adversarial perturbation,

that is to be added to x . By adversarial example we refer to the

perturbed example, i.e., ˜ x i = x + �x , along with the original label

y . We denote the � p norm for 1 ≤ p < ∞ to be ‖ x ‖ p p =

∑ d
j=1 | x (i) | p

and denote the � ∞

norm of a vector x to be ‖ x ‖ ∞

= max i {| x (i) |} .
Given two vectors x and y , the Euclidean inner-product is denoted

〈 x, y 〉 = x T y =

∑

i x i y i . We denote the gradient of a function f (x, y)

with respect to the vector x by ∇ x f (x, y).

2.2. Adversarial examples

To this day, adversarial examples were primarily discussed

in the context of ANNs. They were first introduced by Szegedy

et al. [34] , who generated an adversarial perturbation �x for a

given training point (x, y) by using L-BFGS [38] to solve the box-

constrained optimization problem

min

�x

c‖ �x ‖ 2 + J(θ, x + �x , y
′)

subject to x + �x ∈ [0 , 1] d ,

and y ′ � = y . The fundamental idea here is to construct a small per-

turbation of the data point x in order to force the method to mis-

classify the training example x with some incorrect label y ′ .
Goodfellow et al. [12] point out that when the dimension d is

large, changing each entry of x by a small value ε yields a pertur-

bation �x (such that ‖ �x ‖ ∞

= ε), which can significantly change

the inner product w

T x of x with a weight vector w . They propose

to use an adversarial perturbation defined by

�x = εsign (∇ x J(θ, x, y)) . (1)

Eq. (1) is also known as the “fast gradient sign (FGS) method”. We

present a simple alternative formulation of the problem to natu-

rally show how the adversarial perturbation in (1) was obtained.

If we take a first-order approximation of the loss function around

the true training example x with a small perturbation �x

J θ,y (x + �x) ≈ J θ,y (x) + 〈∇ J θ,y (x) , �x 〉 ,
and maximize the right hand size with respect to �x restricted to

an � ∞

ball of radius ε, we see that the choice that maximizes the

right-hand side is exactly the quantity in Eq. (1) . Replacing the � ∞

ball with a � 2 ball yields a perturbation in the direction of the gra-

dient, coined “fast gradient value” [30] . Since in the case of ANN,

the gradient ∇ x J (θ , x, y) can be computed efficiently using back-

propagation [31] , this approach for generating adversarial exam-

ples is rather fast. In the sequel we will show how the above com-

putation is an example of the framework that we present in this

manuscript.

It is reported in [12,34] that adversarial examples that were

generated for a specific network were mis-classified in a simi-

lar fashion by other networks, with possibly different architec-

tures and using different subsets of the data for training. This phe-

nomenon is known as the “transferability” of adversarial exam-

ples [26] , and is used to create “black-box” attacks (i.e., where the

attacker has no access to the parameters and gradients of the tar-

get network).

Goodfellow et al. [12] propose the following adversarial training

loss function:

˜ J (θ, x, y) = αJ(θ, x, y) + (1 − α) J(θ, x + �x , y) , (2)

with �x as in Eq. (1) . They report that the resulting net had im-

proved test set accuracy, as well as better performance on new ad-

versarial examples. They further give intuitive explanations of this

training procedure being an adversary game, and a min-max opti-

mization over � ∞

balls. In Section 3.2 , we will attempt to make the

second interpretation rigor, by deriving it from a Robust Optimiza-

tion framework.

2.3. Robustification through random perturbations

Let f (x) be the output of a machine learning model on input x . A

possible approach to robustification of models is to smooth f (see,

for example, [24]). A naive approach to obtain such smoothing is

to perturb the model input x at test time. To see this, consider a

case where at test time, given input x , the model outputs f (x + w)

where w ∼ N (0, σ 2 I). In this case

E w ∼N(0 ,σ 2 I) f (x + w) ∝

∫
w

exp

(
−‖ w ‖

2

σ 2

)
f (x + w) dw

= f ∗ N(0 , σ 2 I) , .

i.e, in expectation, the model output is convolved with a Gaussian.

In Section 4, we will demonstrate experimentally that such mech-

anism indeed improves the stability of a neural net to adversar-

ial examples. However, the approach presented in this manuscript,

performs significantly better. In our approach, the robustification

of the model is obtained through a modified training procedure,

which is based on robust optimization . In the remainder of this sec-

tion, we therefore turn to describe the main ideas of robust opti-

mization, and several applications of it in machine learning.

2.4. Robust optimization

Solutions to optimization problems can be very sensitive to

small perturbations in the input data of the optimization problem,

in the sense that an optimal solution given the current data may

turn into a highly sub-optimal or even infeasible solution given a

Download English Version:

https://daneshyari.com/en/article/6863754

Download Persian Version:

https://daneshyari.com/article/6863754

Daneshyari.com

https://daneshyari.com/en/article/6863754
https://daneshyari.com/article/6863754
https://daneshyari.com

