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a b s t r a c t 

The effective fault diagnosis of rotating machinery is critical to ensure the continuous operation of equip- 

ment and is more economical than scheduled maintenance. Traditional signal processing-based and ar- 

tificial intelligence-based methods, such as wavelet packet transform and support vector machine, have 

been proved effective in fault diagnosis of rotating machinery, which prevents unexpected machine break- 

downs due to the failure of significant components. However, these methods have several disadvantages 

that make them unable to automatically and effectively extract valid fault features for the effective fault 

diagnosis of rotating machinery. A novel adaptive learning rate deep belief network combined with Nes- 

terov momentum is developed in this study for rotating machinery fault diagnosis. Nesterov momentum 

is adopted to replace traditional momentum to enable declining in advance and to improve training per- 

formance. Then, an individual adaptive learning rate method is used to select a suitable step length for 

accelerating descent. To confirm the utility of the proposed deep learning network architecture, two ex- 

aminations are implemented on datasets from gearbox and locomotive bearing test rigs. Results indicate 

that the method achieves impressive performance in fault pattern recognition. Comparisons with existing 

methods are also conducted to demonstrate that the proposed method is more accurate and robust. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Rotating machinery is applied on a large scale in modern indus- 

tries, but this machinery inevitably experiences a variety of faults 

under complex working conditions that can lead to serious eco- 

nomic losses and human casualties [1] . In rotating machinery, 30% 

of faults are caused by rolling bearings and 10% by gears. Therefore, 

effective and accurate fault diagnosis of the vital components of 

rotating machinery has considerable significance in ensuring safe 

operation and in avoiding disasters. Accordingly, the fault diagnosis 

of key parts of rotating machinery has attracted extensive research 

attention in recent decades [2] . 

The fault diagnosis methods for rotating machinery currently 

include two main types: signal processing based and artificial in- 

telligence (AI) based fault diagnosis methods. In the former, signal 

processing methods such as empirical mode decomposition, mor- 

phological filter, and wavelet packet transform [3–5] are typically 

applied to extract the fault characteristics from signals. Guo et al. 
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[6] combined spectral kurtosis with ensemble empirical mode de- 

composition to develop a hybrid signal processing method to ex- 

tract impulses generated by bearing faults. Huo et al. [7] pro- 

posed a new multiple-speed fault diagnostic approach based on 

self-adaptive wavelet transform components to identify four con- 

ditions of rolling bearings. Hu et al. [8] adopted a simple har- 

monic wave for the construction of structuring elements to im- 

prove morphological filter and obtained fault characteristics from 

signals with low signal-to-noise ratios. Although these methods 

have been proven to be remarkable and powerful in rotating ma- 

chine fault diagnosis, they still face various challenges. For ex- 

ample, empirical mode decomposition suffers from modal aliasing 

and endpoint effects. For morphological filter and wavelet packet 

transform, the selection of structuring elements and base func- 

tions requires machinery expertise and comprehensive mathemat- 

ical skills, which significantly influence the diagnostic result. 

An AI-based fault diagnosis method can be regarded as a pat- 

tern recognition problem by using the features extracted from the 

collected signals [9] . Examples of these methods include artificial 

neural networks, support vector machines (SVMs), and fuzzy infer- 

ence [10–12] . Xia et al. [13] built a neural network by using a key 

kernels-particle swarm optimization method to identify different 
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health statuses via the kernels of the Volterra series. Zhang et al. 

[14] proposed a multivariable ensemble-based incremental SVM to 

detect multiple faults. Lei et al. [15] applied an adaptive neuro- 

fuzzy inference system to identify the health status of a plane- 

tary gearbox. Although these studies verified the effectiveness of 

AI-based methods, these methods still exhibit three disadvantages. 

(1) The extraction of valid features relies primarily upon advanced 

and complex signal processing technologies and expertise in diag- 

nosis. (2) The selected features require considerable time and man- 

power because the quality of the features determines the classifi- 

cation quality of an AI-based method. In addition, the selected fea- 

tures are only suitable for a specific issue and require reselection. 

(3) SVMs and artificial neural networks are shallow architectures 

that experience difficulty in learning complex non-linear relation- 

ships in fault diagnosis [16] . The design of deep architectures with 

the ability to automatically extract valid fault features for fault di- 

agnosis is encouraged. 

As a new tool in machine learning, deep learning [17] , which 

includes convolutional neural networks [18] , deep neural networks 

[19] , and deep belief networks (DBNs) [20] , can overcome the 

aforementioned limitations of AI-based fault diagnosis methods. 

Deep learning adopts architectures composed of multiple non- 

linear learning layers to obtain highly representative features from 

data and achieve good performance in pattern recognition [21,22] . 

In recent years, deep learning has been successfully adopted in 

fault diagnosis. Sun et al. [23] used a sparse auto-encoder to im- 

plement feature learning in the identification of induction motor 

faults. Janssens et al. [24] presented a feature learning model based 

on convolutional neural networks for bearing fault detection, and 

Chen et al. [25] used convolutional neural networks to identify 

faults in gearboxes. Tran et al. [26] used DBN and Teager–Kaiser 

energy operator to recognize faults in compressor valves, and Shao 

et al. [27] combined DBN with particle swarm to design a novel 

optimization DBN for diagnosis of rolling bearing fault. 

Although deep learning models can automatically learn valid 

features from signals, signals are frequently high-dimensional and 

massive, which results in poor performance and considerable train- 

ing time. Numerous optimization methods, such as the adaptive 

subgradient method [28] and adaptive moment estimation (Adam) 

[29] , have been proposed to accelerate the training speed and im- 

prove the classification performance in image identification. How- 

ever, these methods may lead to the vanishing gradient problem, 

and a few researchers have proven the availability of these opti- 

mization techniques for fault diagnosis. 

In this study, an adaptive learning rate DBN (ADDBN) with Nes- 

terov momentum (NM) is proposed for diagnosis of rotating ma- 

chinery fault diagnosis. The data from gearbox and locomotive 

bearings are used with the proposed method for fault diagnosis. 

The advantages of the proposed method include: (1) better per- 

formance in updating the proper gradient of the learning rate to 

ensure satisfactory generalization ability; (2) the ability to auto- 

matically extract sensitive deep features without artificial feature 

selection; and (3) greater accuracy than several existing methods. 

The rest of this paper is organized as follows. Section 2 presents 

the theoretical background of DBN, and Section 3 explains the the- 

ory of the proposed method. Section 4 validates the effectiveness 

of the proposed DBN model in the fault diagnosis of gearbox and 

locomotive bearings, and Section 5 presents the conclusions of the 

study. 

2. Theoretical context of DBNs 

2.1. Restrict Boltzmann machines (RBMs) architecture 

DBN is a deep learning model that stacks multilayer RBMs. As 

is shown in Fig. 1 , each RBM is composed of a visible layer that 

Fig. 1. Schematic architecture of RBM. 

contains visible neurons v = { v 1 , v 2 , ..., v i } and a hidden layer that 

contains hidden neurons h = { h 1 , h 2 , ..., h j } . 
The visible layer with bias vector a is connected to the hidden 

layer with bias vector b by weights W . No connection exists be- 

tween the neurons in the visible and hidden layers. v i ∈ {0, 1} and 

h j ∈ {0, 1} are binary and discrete stochastic variables that indicate 

an active or inactive state. Then, the energy function for a set of 

determined states ( v, h ) is defined as follows: 

E(v , h ; θ ) = −
m ∑ 

i =1 

n ∑ 

j=1 

w i j v i h j −
m ∑ 

i =1 

a i v i −
n ∑ 

j=1 

b j h j (1) 

where θ = { W, a, b} , v i is the status of the i th visible neuron, and 

h j is the status of the j th hidden neuron. w ij is the connecting 

weight between the i th visible neuron and the j th hidden neuron. 

The joint probability distribution for visible and hidden vectors is 

calculated using Eq. (1) as follows: 

p(v , h ; θ ) = exp (−E(v , h ; θ )) /Z(θ ) (2) 

where Z ( θ ) is a normalizing factor and is defined as: 

Z(θ ) = 

∑ 

v 

∑ 

h 

exp (−E(v , h ; θ )) (3) 

No intra-layer connection exists between visible and hidden 

layers; hence, the conditional probabilities of visible and hidden 

neurons that are conditional independent are given via Eqs. (4) and 

( 5 ), respectively, as follows: 

P ( h | v ; θ ) = P (v , h ; θ ) /P (v ; θ ) = 

∏ 

j 
P 
(
h j | v ; θ

)
(4) 

P ( v | h ; θ ) = P (v , h ; θ ) /P (h ; θ ) = 

∏ 

i 
P ( v i | h ; θ ) (5) 

When binary neurons are considering, the individual activation 

probabilities are expressed as: 

P ( h j = 1 | v ; θ ) = σ
(∑ m 

i =1 
w i j v i + b j 

)
(6) 

P ( v i = 1 | h ; θ ) = σ
(∑ n 

j=1 
w i j h j + a i 

)
(7) 

where σ= 1 / (1 + e −x ) is a sigmoid function. To maximize the fit- 

ting of input data, the stochastic gradient descent (SGD) is applied 

to maximize the logarithmic likelihood function of RBM to obtain 

the optimal parameters, which are denoted as θ ∗ and expressed in 

the following equation: 

θ ∗= arg max 
θ

L (θ ) = arg max 
θ

∑ 

v 
log P (v | θ ) (8) 
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