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a b s t r a c t 

Unsupervised learning of adaptive distance metrics for categorical data is currently a challenge due to 

the difficulties in defining an inherently meaningful measure parameterizing the heterogeneity within 

matched or mismatched categorical symbols. In this paper, a new distance metric called category dis- 

tance and a non-center-based algorithm are proposed for categorical data clustering. The new metric is 

formulated based on the category weights for each categorical attribute, no more depending on the com- 

mon assumption that all categories on the same attribute are independent of each other. The problem of 

learning the category distance is therefore transformed into the new problem of learning a set of category 

weights, which can be jointly optimized with the clusters optimization. A case study on DNA sequences 

and experimental results on ten real-world data sets from different domains are given to demonstrate the 

performance of the proposed methods with comparisons to the existing distance measures for categorical 

data. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Computing the dissimilarity (or similarity) between data objects 

is one of the key intermediate operations in many machine learn- 

ing tasks, such as data clustering aimed at partitioning a set of 

objects into homogeneous groups based on some distance func- 

tions. Learning of an adaptive distance metric for data clustering 

has sparked wide interest because of inherent data dependency of 

the semantic dissimilarity between data objects [1,2] . A number of 

unsupervised metric learning methods have been proposed, includ- 

ing kernel linear transformation [3,4] , relevant component analysis 

[5] , automated attribute-weighting [6] and many others integrating 

feature extraction methods [1,7,8] . 

These methods have been applied to many distance-based clus- 

tering tasks and gained great popularity. However, they mainly fo- 

cus on learning distance metric from numeric data, where the met- 

ric can be parameterized in a well-defined measure, for instance, 

the Mahalanobis distance function [9,10] . For categorical data, dis- 

tance computation is not straightforward. The problem becomes 

difficult due to the fact that in categorical case the data can only 

take discrete values (categorical symbols or categories) and statis- 

tical measures such as mean, variance as well as covariance, which 

are common in numeric data, are undefined for categorical data 

∗ Corresponding author. 

E-mail address: chenbaoguo@fzfu.edu.cn (B. Chen). 

[11,12] . Consequently, the learning methods that have been suc- 

cessfully used for numeric data, including the popular maximum- 

margin-based approaches [13] , sparse representation and manifold 

learning [14] , Laplacian regularized metric learning [15] and the 

continuous-kernel methods [16] , cannot be directly applied to cat- 

egorical data. 

Learning a distance metric on categorical data is a fundamental 

problem as such data have become ubiquitous in machine learn- 

ing applications [11,12,17,18] . A few intuitive metrics have been de- 

fined, such as the common overlap measure, occurrence frequency 

[19] , information-theoretic metric [20] , etc (see [21] for a survey 

or Section 2.2 for the typical measures). For example, the over- 

lap measure (alternatively known as the simple-matching coeffi- 

cient [12] ) computes the similarity from the number of categories 

that appear in both objects, and have been widely used in the cat- 

egorical data clustering algorithms including the popular K -modes 

and its numerous variants [11,22] . 

We remark that these metrics are not valid in many real ap- 

plications because, essentially, they are defined based on the as- 

sumption that all the categories in the data are independent of each 

other [23] : samples having different categories are independent of 

each other while they are perfectly correlated as long as the same 

category is taken. The assumption is generally not true in reality. 

For instance, in the international trade catalogue, the categories 

“blazers” and “jackets” are quite heterogeneous since both make up 

one of the components of a suit. As an other example, take an at- 

tribute representing customers’ age: two customers may share the 
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same category “Middle-aged”, but their real ages can actually be 

different. Many exam ples like these pose a unique challenge to the 

distance definition, because there is currently no method for adap- 

tively learning the category dissimilarity for a polytomous attribute 

in clustering categorical data [23,24] . 

In this paper, we propose to solve these problems by learning 

a category distance metric for categorical data clustering. The met- 

ric assigns an individual distance value to each pair of categories 

on the same attribute, either matched or mismatched, to distin- 

guish their heterogeneity such that the independence assumption 

is relieved. The category distance metric is then parameterized by a 

set of category weights, allowing the learning problem to be trans- 

formed into the new problem of learning the optimized weights. 

We also define a new clustering algorithm based on the category 

distance metric, to perform non-center-based clustering on cate- 

gorical data with the distance metric jointly learned from the data. 

A series of experiments on UCI categorical data sets are conducted 

to evaluate the performance of the distance metric and the clus- 

tering algorithm. 

The remainder of this paper is organized as follows: 

Section 2 presents some preliminaries and related work. 

Section 3 describes our category distance metric. In Section 4 , 

the distance learning method and the new clustering algorithm 

are presented. Experimental results are presented in Section 5 . 

Section 6 gives our conclusions. 

2. Preliminaries and related work 

In this section, notation and definitions related to categorical 

data clustering are introduced, followed by a sampling of related 

work on the distance measures for categorical data. 

2.1. Preliminaries 

In the following pages, the sample set to be grouped into 

K clusters is denoted by X , which consists of N = | X| data ob- 

jects, each being a D -dimensional vector x = 〈 x 1 , x 2 , . . . , x D 〉 or y = 

〈 y 1 , y 2 , . . . , y D 〉 . We call x a categorical data object if each attribute 

x d for d = 1 , 2 , . . . , D is a categorical attribute, as defined in the fol- 

lowing Definition 1 . 

Definition 1 (Categorical attribute) . An attribute is of categorical 

type if it takes values from the finite symbols (categories) set S = 

{ s 1 , s 2 , . . . , s m 

} , where m = | S| is the number of symbols. 

Such categorical data have become ubiquitous in machine 

learning applications. In bioinformatics, for instance, the nu- 

cleotides in each position of DNA sequences can be viewed as 

a categorical attribute, where the category set is typically S = 

{ ′ A 

′ , ′ G 

′ , ′ T ′ , ′ C 

′ } . Clearly, the set mean is a undefined concept for 

such a categorical data set. As a consequence, the popular K -means 

type algorithms, which make use of the set mean to represent the 

cluster center, cannot be directly used for categorical data cluster- 

ing. The K -modes algorithm and its variants [11,25] then resort to 

the mode categories on each attribute to represent the “center”

for categorical clusters. However, such mode-based approaches can 

only capture partial information on the data objects in a cluster. To 

define an efficient clustering algorithm without the formulation for 

cluster centers, partition-based methods have been suggested [12] , 

as shown in the following Definition 2 . 

Definition 2 (Partition-based categorical data cluster- 

ing) . Partition-based clustering of the categorical data set X is 

the optimized partitioning � = { πk | k = 1 , 2 , . . . , K } that mini- 

mizes 

J 0 (�) = 

K ∑ 

k =1 

1 

| πk | 
∑ 

x ∈ πk 

∑ 

y ∈ πk 

Dis ( x , y ) 

s . t . X = 

K ⋃ 

k =1 

πk and ∀ k : πk � = ∅ , (1) 

where Dis ( · , · ) measures the pairwise dissimilarity of categorical 

objects, and π k denotes the k th cluster of X with | π k | being the 

number of objects in π k . 

Unlike the numeric case, where the pairwise dissimilarity can 

be measured using the common distance functions such as the Eu- 

clidean distance, here, Dis ( · , · ) should be computed as that aggre- 

gation of the symbolic distance on each categorical attribute. For- 

mally, 

Dis ( x , y ) = 

∑ D 

d=1 
[ ψ(x d , y d )] 2 (2) 

where ψ( · , · ) is the distance metric measuring the symbolic dis- 

similarity between two categories. Based on the definitions, the 

problem of learning ψ( · , · ) can be alternatively represented as 

learning the real matrix � for each categorical attribute of X , de- 

fined by 

� = 

⎡ 

⎢ ⎢ ⎣ 

ψ(s 1 , s 1 ) ψ(s 1 , s 2 ) . . . ψ(s 1 , s m 

) 

ψ(s 2 , s 1 ) ψ(s 2 , s 2 ) . . . ψ(s 2 , s m 

) 

. . . . . . . . . . . . 

ψ(s m 

, s 1 ) ψ(s m 

, s 2 ) . . . ψ(s m 

, s m 

) 

⎤ 

⎥ ⎥ ⎦ 

satisfying, for any three categories c, c ′ , c ′ ′ on that attribute (there- 

fore, c, c ′ and c ′ ′ ∈ S ), 

Condition (1) : ψ( c, c ′ ) ≥ 0 (non-negativity), 

Condition (2) : ψ(c, c ′ ) = ψ(c ′ , c) (symmetry), and 

Condition (3) : ψ(c, c ′ ) ≤ ψ(c, c ′′ ) + ψ(c ′′ , c ′ ) (triangular in- 

equality). 

2.2. A sampling of related work 

The similarity or distance measures defined for categorical data 

in the literature can be roughly divided into three groups, named 

Type I, Type II and Type III measures, respectively. The measures 

will all be in the context of dissimilarity (distance) for discussion, 

with the similarity converted by 1 − ψ(·, ·) . 
In the Type I measures, the diagonal elements of � are fixed 

at 0, while ψ(c, c ′ ) = w for c � = c ′ , where w is the attribute weight, 

which is a positive constant irrelevant to c or c ′ . Such a measure, 

called Overlap Measure (OM) [21] , is defined based on the simple- 

matching method, given by 

ψ OM 

(c, c ′ ) = w ×
{

0 c = c ′ 
1 c � = c ′ (3) 

In the case where w = 1 , it degenerates to the common simple- 

matching distance as mentioned before. Though simple, the mea- 

sure has been used in the categorical data clustering algorithms, 

such as the well-known K -modes algorithm [25] . An effective ex- 

tension to the simple-matching distance is to define a weighted 

measure, by learning the attribute weight w ∈ [0, 1]. For example, 

in [26] , w is computed as being inversely proportional to the ker- 

nel bandwidth of the categorical attribute, while in [11] it is calcu- 

lated based on the complement-entropy of the category distribu- 

tion. 

It can be seen that, in the Type I measures, distance is defined 

as zero between two samples sharing a common category without 

considering the heterogeneity of the categorical attribute. This is 

because such measures are generally based on the independence as- 

sumption , as described in Section 1 . The measures of Type II fix this 
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