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a b s t r a c t 

This paper studies the problem of exponential synchronization for a class of Markovian jump complex dy- 

namical networks (MJCDNs) with stochastic disturbances and partially uncertain transition. By construct- 

ing the novel stochastic Lyapunov–Krasovskii function (LKF), and utilizing stochastic analysis, feedback 

pinning control technique and inequality techniques, some sufficient criteria are established in terms of 

linear matrix inequalities (LMIs) to guarantee the exponential synchronization of the MJCDNs with time 

delays and without it. Finally, according to a Markovian chain with partially uncertain transition rates, 

some numerical examples are given to demonstrate the effectiveness of the proposed results. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Complex network is a kind of network which presents a high 

degree of complexity, its complexity is mainly manifested in three 

aspects: the first one is a large number of nodes; the second is 

the complex topology; and the third one is the complex dynamic 

behavior of each node. In addition to the power grid networks, 

the transportation networks, World Wide Web (WWW), the Inter- 

net and the interpersonal networks, in reality, the complex net- 

works also include food webs, metabolic networks, etc. Because the 

complex networks system is dynamical, coupled with its complex 

dynamic behavior and control characteristics, the dynamic control 

and synchronization of complex dynamical networks system has 

become the focus of researchers [1–5] . 

During the past few years, Markovian jump system has been 

gaining increased research attention. The applications of the 

Markov jump systems can be sought in communication systems, 

network control systems, economic systems, modeling production 

systems, manufacturing systems and so on. In many practical en- 

gineering process, the random changes of the parameters such 
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as changing coupling subsystem interconnections, the failure of 

the internal components or the influence of the external environ- 

ment disturbance will lead to the change of the system parameters 

and the change of the topological structure, thus, the system can 

be switched between different model structures [6,7] . The results 

of previous studies were often derived from the assumption that 

the transition probabilities on the Markov jump systems are com- 

pletely known [8–11] , however, practically in general cases tran- 

sition probabilities in the Markovian switching process are partly 

unknown or completely unknown. Therefore, it is necessary and 

significant to investigate more general jump systems with par- 

tially unknown transition probabilities. The problem of stability for 

Markovian jump systems with partly unknown transition probabil- 

ities has been discussed in [12–15] . In [16,17] , the authors inves- 

tigated the problems of synchronization for a class of Markovian 

jump networks with partly unknown transition probabilities. 

In particular, the synchronization problem, as a significant and 

common phenomenon among various complex dynamical behav- 

iors, has receive increasing attention and many significant ad- 

vances have been studied extensively. Recently, with the further 

exploration of the complex network topology, especially since 

Watts and Strogatz introduced the small-world model to describe 

the more realistic networks [18] , Barabsi and Albert found scale- 

free networks in 1999 [19] , the dynamical characteristics of the 

network topology have attracted a lot of interest in variety of 

fields, including physics, biology and engineering [20,21] . There are 
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many different kinds of synchronization, such as exponential syn- 

chronization in [7,10] , adaptive synchronization in [22,23] , general- 

ized synchronization in [24] , lag synchronization in [25] , etc. By us- 

ing the periodically intermittent pinning control, several sufficient 

conditions are derived to ensure exponential synchronization for 

complex dynamical networks with stochastic perturbed in [8] . In 

[22] , Yang and Cao investigated adaptive pinning synchronization 

of complex networks with non-delayed and delayed couplings and 

vector-form stochastic perturbations. In this paper, adaptive pin- 

ning controllers are designed to guarantee the synchronization of 

the complex networks even if partial states of the nodes are cou- 

pled. In [24] , by utilizing the linear transformations theory, Yang 

and Chua presented the necessary and sufficient conditions to gen- 

eralized synchronization between two chaotic systems. In addition, 

Wu and Lu [25] studied the projective lag synchronization phe- 

nomenon of the general complex dynamical networks with differ- 

ent nodes. 

In this paper, our main aim is to derive the criteria to exponen- 

tial synchronization for MJCDNs with partially uncertain transition 

rates and stochastic disturbances by the negative feedback pinning. 

The main motivation and contribution of this paper lie in three as- 

pects: Firstly, we present a new Markov jump complex dynamical 

network model with delayed coupling and without it, by using the 

Lyapunov–Krasovskii functional method and the stochastic stabil- 

ity analysis theory, some novel sufficient conditions are obtained 

to guarantee exponential synchronization of the MJCDNs. More- 

over, the complex network model of this paper is more general and 

practical, which is different from [26] , the complex network model 

involves stochastic disturbances. Due to the stochastic perturba- 

tions are unavoidably affect the behavior of complex dynamical 

networks, the signals transmitted between nodes of Markov jump 

complex networks system or the subsystem are inevitably subject 

to stochastic disturbances from environment, which maybe affect 

the measurement of the transition probabilities and even break the 

stability of complex dynamical networks [27] , Therefore, stochas- 

tic disturbances problems of MJCDNs are not be neglected. In this 

paper, based on the It ̂ o formula and exponential synchronization 

theory, an feasible control method is present to guarantee the ex- 

ponential synchronization of the MJCDNs with stochastic distur- 

bances and partially uncertain transition. Finally, the control gain 

matrices of the feedback controllers have been derived in terms of 

LMIs which can be easily solved, and some numerical simulations 

are performed to verify the effectiveness and feasibility of the syn- 

chronization scheme. 

The rest of this paper is organized as follows. In Section 2 , 

a general model of Markov jump complex network with time- 

varying delays dynamical nodes and stochastic disturbances, and 

some preliminaries are proposed. Exponential synchronization cri- 

teria are derived and the negative feedback controllers are de- 

signed for the considered Markov jump complex networks in 

Section 3 . Section 4 provides two numerical simulations to illus- 

trate the theoretical results. Finally, some concluding remarks are 

drawn in Section 5 . 

Notation: Throughout this article, R n and R n × m denote the 

n-dimensional Euclidean space and the set of n × m real matri- 

ces,respectively. for symmetric matrices X and Y , the notation 

X ≥ Y ( X ≤ Y ) means the matrix X − Y is real positive definite (neg- 

ative definite). The Kronecker product of matrices A ∈ R m × n and 

B ∈ R p × q are matrices in R mp × nq and denote as ( A �B ). F is the σ - 

algebra of events, { F t } t≥0 is increasing and right-continuous while 

F 0 contains all P-null sets, P is the probability measure defined on 

F . I N is the N-dimensional identity matrix, A 

T denotes the trans- 

pose of matrix A , A 

−1 denotes the inverse of A . ‖ · ‖ stands for the 

2-norm and ‖ x ‖ = 

√ 

x T x , diag { ���} represents a block-diagonal ma- 

trix, the asterisk ∗ is used to represent the symmetric term in a 

matrix. 

2. Models and preliminaries 

Let { r ( t ), t ≥ 0} be a right-continuous Markovian chain on a 

complete probability space 
(
�, F , { F t } t≥0 , P 

)
taking values in the 

finite state space S = { 1 , 2 , . . . , s } , with a generator � = (πrp ) s ×s , 

r , p ∈ S given by 

p { r (t + �) | r (t) = r } = 

{
πrp � + o(�) , r � = p, 

1 + πrp � + o(�) , r = p. 
(1) 

Here �> 0 and lim �→ 0 
o(�) 
� = 0 , πrp = 0 is the transition rate 

from t to p at time t + �, if r � = p , while πrr = −∑ s 
p=1 ,p� = r πrp . 

Consider the following Markovian jump complex delayed net- 

work consisting of N identical nodes with diffusively couplings, in 

which each node is an n -dimensional dynamical system: ⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ x k (t) = −C(r(t )) x k (t ) + A (r(t )) f ( x k (t )) + B (r(t)) g( x k (t − τ (t))) 

+ c 
N ∑ 

l=1 

G kl (r(t))�x l (t − τ (t)) , k = 1 , 2 , . . . , N, 

x k (t) = ξk (t) ∈ L F 0 ([ −2 τ, 0] , R 

n ) , t ∈ [ −2 τ, 0] , 

(2) 

where x k (t) = [ x k 1 (t ) , x k 2 (t ) , . . . , x kn (t )] T ∈ R n is the state vector 

of k th node. C(r(t)) = diag{ c r(t) 
1 

, c r(t) 
2 

, c r(t) 
n } ∈ R n ×n is a positive 

diagonal matrix, A (r(t)) = (a r(t) 
kl 

) n ×n and B (r(t)) = (b r(t) 
kl 

) n ×n 

are respectively described as weight matrix and the delayed 

weight matrix, � = diag( γ1 , γ2 , · · · , γn ) ∈ R n ×n , � = ( �kl ) n ×n de- 

notes the inner coupling matrix of the networks. f ( x k (t)) = 

[ f 1 ( x k 1 (t)) , f 2 ( x k 2 (t)) , . . . , f n ( x kn (t)) ] 
T 

and g( x k (t − τ (t))) = 

[ g 1 ( x k 1 (t − τ (t))) , g 2 ( x k 2 (t − τ (t))) , . . . , g n ( x kn (t − τ (t))) ] 
T 

rep- 

resent nonlinear vector-valued functions; c > 0 is the coupling 

strength; G (r(t)) = ( G kl (r(t))) N×N denotes the outer coupling 

configuration matrix of the network at mode r ( t ), which rep- 

resents the topology structure of the complex network, and 

the entries G kl ( r ( t )), k, l = 1 , 2 , . . . , N are defined as follows: 

if there exists a connection between nodes k and l ( l � = k ), 

then G kl (r(t)) = G lk (r(t)) > 0 , otherwise, G kl (r(t)) = G lk (r(t)) = 

0 ( j � = i ) and the diagonal elements of matrix G are defined by 

G kk (r(t)) = −∑ N 
l =1 ,l � = k G kl (r(t)) = −∑ N 

l =1 ,l � = k G lk (r(t)) . 

τ ( t ) is the differentiable time-varying delay satisfying 

0 ≤ τ ( t ) ≤ τ , ˙ τ (t) ≤ μ < 1 , τ and μ are known scalars. Then, 

the initial conditions with network systems (1) are given by 

e k (t) = ξk (t) ∈ L F 0 ([ −2 τ, 0] , R n ) , t ∈ [ −2 τ, 0] , k = 1 , 2 , . . . , N. 

In this paper, the transition rates (TR) of the jumping process 

are considered to be partly uncertain. Assuming the TR matrix for 

system (2) with s operation modes as follow: 

[ πrp ] s ×s = 

⎡ 

⎢ ⎢ ⎣ 

π11 ? · · · ? 
? π22 · · · π2 s 

. . . 
. . . 

. . . 
. . . 

πs 1 ? · · · πss 

⎤ 

⎥ ⎥ ⎦ 

, 

where “?” denotes the unknown transition rate. In order to facili- 

tate the application, for ∀ r ∈ S the set S denotes S = S r 
1 

∪ S r 
2 

with 

S r 
1 

= { p | πrp is known f or p ∈ S} , 
S r 

2 
= { p | πrp is unknown f or p ∈ S} . 

Then, the response complex delayed networks with stochastic 

disturbances can be given by 

˙ y k (t) = −C(r(t)) y k (t) + A (r(t)) f ( y k (t)) + B (r(t)) g( y k (t − τ (t))) 

+ c 

N ∑ 

l=1 

G kl (r(t))�y l (t − τ (t)) + u k (t) 

+ σk (t, e k (t) , e k (t − τ (t)) , r(t)) ˙ ω (t) , k = 1 , 2 , . . . , N, (3) 

where y k (t) = [ y k 1 (t ) , y k 2 (t ) , . . . , y kn (t )] T ∈ R n is the state vec- 

tor of the i th node of the response complex delayed net- 

works (2) and (3) . σ k ( t ) is the noisy intensity function, ω(t) = 
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