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a b s t r a c t 

We study asymptotic properties of Fisher memory of linear Echo State Networks with randomized sym- 

metric state space coupling. In particular, two reservoir constructions are considered: (1) More direct 

dynamic coupling construction using a class of Wigner matrices and (2) positive semi-definite dynamic 

coupling obtained as a product of unconstrained stochastic matrices. We show that the maximal Fisher 

memory is achieved when the input-to-state coupling is collinear with the dominant eigenvector of the 

reservoir coupling matrix. In the case of Wigner reservoirs we show that as the system size grows, the 

contribution to the Fisher memory of self-coupling of reservoir units is negligible. We also prove that 

when the input-to-state coupling is collinear with the sum of eigenvectors of the state space coupling, 

the expected normalized memory is four and eight time smaller than the maximal memory value for the 

Wigner and product constructions, respectively. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Input driven dynamical systems play a prominent role in 

machine learning as models applied to time series data, e.g. 

[2,10,15,21] . There has been a lively research activity on formulat- 

ing and assessing different aspects of computational power and in- 

formation processing in such systems (see e.g. [5,16] ). For example, 

tools of information theory have been used to assess information 

storage or transfer within systems of this kind [3,13,14,17] . Alterna- 

tively, dynamical systems have been assessed as feature generators 

for machine learning algorithms in terms of class separability (in 

sequence classification problems) or learnability [12] . 

To specifically characterize capability of input-driven dynami- 

cal systems to keep in their state-space information about past in- 

puts, several memory quantifiers were proposed, for example short 

term memory capacity [9] and Fisher memory curve [6] . Even though 

those two measures have been developed from completely differ- 

ent perspectives, deep connections exist between them [20] . The 

concept of memory capacity, originally developed for univariate in- 

put streams, was generalized to multivariate inputs in [8] . Couillet 

et al. [4] rigorously studied mean-square error of linear dynami- 

cal systems used as dynamical filters in regression tasks and sug- 

gested memory quantities that generalize the short term memory 

capacity and Fisher memory curve measures. Finally, Ganguli and 
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Sompolinski [7] showed an interesting connection between mem- 

ory in dynamical systems and their capacity to perform dynamical 

compressed sensing of past inputs. 

In this contribution we concentrate on Fisher memory of linear 

dynamical systems with symmetric coupling. In Echo State Net- 

works (ESN) [15] large state space dimensionalities with random 

dynamical couplings are typically used and linear readout from the 

state space forms the only trainable part of the model. It is there- 

fore important to characterize important large scale properties of 

Fisher memory in such systems (as the state space dimensionality 

grows) and study optimal settings of input-to-state couplings that 

maximize the memory. In particular, we rigorously study Fisher 

memory of two subclasses of linear input driven dynamical sys- 

tems with symmetric dynamical coupling - a direct dynamic cou- 

pling construction using a class of Wigner matrices ( Section 3 ) and 

a positive semi-definite dynamic coupling obtained as a product of 

unconstrained stochastic matrices ( Section 4 ). 

2. Fisher memory curve of linear dynamical systems 

We consider linear input driven dynamical systems with N - 

dimensional state space and univariate inputs and outputs with 

randomized symmetric dynamic coupling. 

In the ESN metaphor, the state dimensions correspond to reser- 

voir units coupled to the input s ( t ) and output y ( t ) through N - 

dimensional weight vectors v ∈ R 

N and r ∈ R 

N , respectively. Denot- 

ing the state vector at time t by x (t) ∈ R 

N , the dynamical system 
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(reservoir activations) evolves as 

x (t) = v s (t) + Wx (t − 1) + z (t) , (1) 

where W ∈ R 

N×N is a N × N weight matrix providing the dynami- 

cal coupling and z ( t ) are zero-mean noise terms. Parameters r of 

the adaptive linear readout, y (t) = r T x (t) , are typically trained (of- 

fline or online) by minimizing the (normalized) mean square error 

between the targets and reservoir readouts y ( t ). For our analysis, 

however, the readout part of the ESN architecture is not needed. 

In ESN, the elements of W and v are fixed prior to training, 

often at random, with entries drawn from a distribution symmet- 

ric with respect to the origin. The reservoir connection matrix W 

is typically scaled to a prescribed spectral radius < 1, although in 

this study we assume that the parameters of the distribution over 

W are set so that asymptotically, almost surely, W is a contractive 

linear operator. 

In [6] Ganguli et al. proposed a particular way of quantify- 

ing the amount of memory preserved in linear input driven dy- 

namical systems corrupted by a memoryless Gaussian i.i.d dy- 

namic noise 1 z ( t ). In particular, z ( t ) is zero mean with co-variance 

εI , ε > 0, where I is the N × N identity matrix. Under such dy- 

namic noise, given an input driving stream s (..t) = ... s (t − 2) 

s (t − 1) s (t) , the input-conditional state distribution 

p(x (t) | ... s (t − 2) s (t − 1) s (t)) 

is a Gaussian with covariance [6] 

C = ε
∞ ∑ 

� =0 

W 

� (W 

T ) � . (2) 

Sensitivities of p ( x ( t )| s (.. t )) with respect to small perturbations in 

the input driving stream s (.. t ) (parameters of the dynamical system 

remain fixed) are collected in the Fisher memory matrix F with 

elements 

F k,l (s (..t)) = −E p(x (t) | s (..t)) 

[
∂ 2 

∂ s (t − k ) ∂ s (t − l) 
log p(x (t) | s (..t)) 

]

and its diagonal elements J N (k ) = F k,k (s (..t)) quantify the informa- 

tion that the state distribution p ( x ( t )| s (.. t )) retains about a change 

(e.g. a pulse) entering the network k > 0 time steps in the past. The 

collection of terms { J N (k ) } ∞ 

k =0 
was termed Fisher memory curve 

(FMC) and evaluated to [6] 

J N (k ; W , v ) = v T (W 

T ) k C 

−1 W 

k v , (3) 

where in the notation J N ( k ; W, v ) we made explicit the dependence 

of FMC on the dynamic and input and couplings W and v , respec- 

tively. 

Analogously to memory capacity of dynamical systems [9] , we 

extend the Fisher memory curve to the global memory quantifica- 

tion, 

J N (W N , v ) = 

∞ ∑ 

k =1 

J N (k ; W N , v ) . 

We will refer to J N (W N , v ) as Fisher memory of the underlying dy- 

namical system. Obviously, increasing state space dimension N will 

increase the amount of memory that can be usefully captured by 

1 As customary in the dynamical systems literature, we distinguish between the 

“observational” and “dynamic” noise. Observational noise refers to the noise ap- 

plied to readouts from the state space in the process of their measurement. This 

noise does not corrupt the underlying dynamics of the system. On the other hand, 

dynamic noise corrupts the system dynamics in the state space. The term dynamic 

noise does not in this case refer to the possibility of its distribution changing in 

time. 

the dynamical system (1) . To remove this bias, we introduce a new 

quantity, normalized Fisher memory , which measures the amount of 

memory realisable by the dynamical system per state space dimen- 

sion : 

J̄ N (W N , v ) = 

1 

N 

J N (W N , v ) . 

In the following we study asymptotic properties of the nor- 

malized Fisher memory as the state space dimensionality grows 

and ask what kind of input coupling v is needed to maximize 

its expectation. Again, it is important to realize that as the state 

space dimensionality N grows, so does the input weight dimen- 

sionality. Keeping the input weight norm constant while increas- 

ing the state space dimensionality would result in diminishing in- 

dividual weights. To normalize the scales, so that asymptotic state- 

ments can be made, we will require that the input weights live on 

(N − 1) -dimensional hypersphere, v ∈ S N−1 ( 
√ 

N ) , where for r > 0, 

S N−1 (r) = { v ∈ R 

N | ‖ v ‖ 2 = r} . 

3. Wigner ESN 

Theory of random matrices has undergone considerable devel- 

opment, see e.g. [19] . In this contribution we will study dynam- 

ical systems with randomized coupling constrained to the class 

of Wigner matrices (e.g. [1] ). Let Q N be a random symmetric 

N × N matrix with “upper triangular” off-diagonal elements Q i, j , 

1 ≤ i < j ≤ N distributed i.i.d. with zero mean and finite moments - 

in particular, of variance σ 2 
o > 0 . Diagonal elements Q i, i , 1 ≤ i ≤ N of 

Q N are distributed i.i.d. with a zero-mean distribution of finite mo- 

ments and variance σ 2 
d 

> 0 . The elements below the diagonal are 

copies of their symmetric counterparts: for 1 ≤ j < i ≤ N , Q i, j = Q j,i . 

Asymptotic properties of such matrices have been intensively stud- 

ied, in particular the convergence of eigenvalues, as N → ∞ . It can 

be shown that in the general case, scaling down of random matri- 

ces is necessary to ensure convergence of their spectral properties 

[1] : 

W N = 

1 √ 

N 

Q N . 

We will refer to ESN with dynamical coupling W N as Wigner Echo 

State Networks. We are now ready to state the first result concern- 

ing maximal Fisher memory of Wigner ESNs. 

Theorem 1. Consider a sequence of Wigner dynamical systems 

(1) with couplings { W N } N > 1 . The maximum normalized Fisher mem- 

ory is attained when for every realization of Wigner coupling W N , the 

input weights v are collinear with the dominant eigenvector 2 of W N . 

In that case, as N → ∞ , almost surely, 

J̄ N (W N , v ) → 

4 

ε
σ 2 

o . 

Proof. For a fixed N , let W N be a realization of Wigner coupling. 

Since W N is symmetric, it can be diagonalised, 

W N = U N �N U 

T 
N , �N = diag (λ1 , λ2 , . . . , λN ) . (4) 

Without loss of generality assume λ1 ≥ λ2 ≥ · · ·λN . Columns of U N 

are eigenvectors { u i } N i =1 
of W N , forming an orthonormal basis of 

R 

N . Let ˜ v be the expression of input weights v in this basis, i.e. 

˜ v = U 

T 
N v . It has been shown in [20] that for symmetric dynamic 

couplings, 

J N (k ; W N , v ) = 

1 

ε

N ∑ 

i =1 

˜ v 2 i λ2 k 
i (1 − λ2 

i ) . 

2 the eigenvector corresponding to the maximal eigenvalue. 
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