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a b s t r a c t 

The analysis of deep Recurrent Neural Network (RNN) models represents a research area of increasing 

interest. In this context, the recent introduction of Deep Echo State Networks (DeepESNs) within the 

Reservoir Computing paradigm, enabled to study the intrinsic properties of hierarchically organized RNN 

architectures.In this paper we investigate the DeepESN model under a dynamical system perspective, aim- 

ing at characterizing the important aspect of stability of layered recurrent dynamics excited by external 

input signals.To this purpose, we develop a framework based on the study of the local Lyapunov expo- 

nents of stacked recurrent models, enabling the analysis and control of the resulting dynamical regimes. 

The introduced framework is demonstrated on artificial as well as real-world datasets. The results of our 

analysis on DeepESNs provide interesting insights on the real effect of layering in RNNs. In particular, 

they show that when recurrent units are organized in layers, then the resulting network intrinsically de- 

velops a richer dynamical behavior that is naturally driven closer to the edge of criticality. As confirmed 

by experiments on the short-term Memory Capacity task, this characterization makes the layered design 

effective, with respect to the shallow counterpart with the same number of units, especially in tasks that 

require much in terms of memory. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The extension of deep learning methodologies to the class of 

Recurrent Neural Networks (RNNs) is currently stimulating an in- 

creasing interest in the machine learning community [1,2] . In this 

area, the study of hierarchically structured RNN architectures (see 

e.g. [3–8] ) paved the way to the design of models able to develop 

feature representations of temporal information at increasing levels 

of abstraction, enabling a natural approach to tasks on time-series 

featured by multiple time-scales (especially in the cognitive area). 

Besides, the elaboration of temporal information in a layered and 

recurrent fashion is also motivated by strong evidences of biologi- 

cal plausibility emerged from the area of neuroscience [9,10] . 

However, the analysis of deep RNNs is relatively young, and 

one of the major topics still deserving research attention is re- 

lated to understanding and characterizing their dynamical behav- 

ior, especially in relation to the inherent role of the hierarchical 

composition of the recurrent units in layers. A useful methodol- 

ogy in this regard is provided by the Reservoir Computing (RC) 

[11,12] paradigm and the Echo State Network (ESN) [13,14] ap- 

proach to RNNs modeling. In particular, allowing to taking apart 
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all the effects due to learning, the recent introduction of the Deep- 

ESN model [15,16] enabled the study of the intrinsic role played by 

the layering factor in deep RNN architectures. Moreover, by inher- 

iting the training characterization typical of standard RC models, 

DeepESNs also provide an efficient methodology for designing and 

training deep learning models in the temporal domain. 

A first mean to investigate the characteristics of recurrent net- 

work dynamics is given in the RC area by the Echo State Property 

(ESP) [17] , which has recently been extended to the case of deep 

networks in [18] . The analysis provided by the study of the ESP 

conditions in [17] has started to reveal the natural characteriza- 

tions of deep RNNs under a dynamical system perspective [18] , but 

it might result of reduced utility in practical cases as it basically 

neglects the influence of the external input on networks dynamics. 

By their very nature, recurrent neural models implement dynam- 

ical systems whose trajectories in the state space are influenced 

by initial conditions and by the external input signals, which prac- 

tically realize a link between the system dynamics and the com- 

putational task at hand. In this context, the analysis of stability of 

deep RNNs dynamics when driven by an external input represents 

a topic of great importance and still demanded in literature. 

In this paper, by pursuing the study of the dynamical be- 

havior of recurrent models typical in the RC area, we provide a 

theoretical and practical tool that allows us to investigate and 

control the stability of deep recurrent networks driven by the 

input. Specifically, we extend the applicability of the study of 

https://doi.org/10.1016/j.neucom.2017.11.073 

0925-2312/© 2018 Elsevier B.V. All rights reserved. 

Please cite this article as: C. Gallicchio et al., Local Lyapunov exponents of deep echo state networks, Neurocomputing (2018), 

https://doi.org/10.1016/j.neucom.2017.11.073 

https://doi.org/10.1016/j.neucom.2017.11.073
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:gallicch@di.unipi.it
mailto:micheli@di.unipi.it
mailto:silvestriluca@hotmail.it
https://doi.org/10.1016/j.neucom.2017.11.073
https://doi.org/10.1016/j.neucom.2017.11.073


2 C. Gallicchio et al. / Neurocomputing 0 0 0 (2018) 1–12 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; March 3, 2018;22:16 ] 

local Lyapunov exponents [19,20] from the case of shallow ESNs 

(see e.g. [12,21,22] ) to the case of DeepESNs. In particular, the 

maximum among the local Lyapunov exponents is a useful mean 

to express the network’s sensibility to small perturbations of its 

state trajectories, and as such it can well quantify the degree of 

stability (or order) in the dynamical behavior of the system. Given 

the actual input for the system, the proposed methodology can 

be used to identify the different dynamical regimes that follow 

from different cases of networks design conditions, such as the 

RC scaling factors, the number of recurrent units and the depth 

of the network. The proposed tool is practically demonstrated on 

artificial data as well as on signals from real-world datasets. 

While the developed tool could be certainly applied to the case 

of deep RNNs at any stage of training, its application in the RC con- 

text enables us to investigate the actual role of layering in RNNs 

and shed light on its natural effect on the richness and stability 

of the developed network’s dynamics. In this regard, a particularly 

interesting condition of dynamical behavior is represented by the 

stable-unstable transition where the maximum local Lyapunov ex- 

ponent is null, a region of the state space known as the edge of 

criticality. Previous works in the RC literature already showed that 

the performance of recurrent models for tasks requiring a long 

memory span peaks near the criticality of their dynamical behav- 

ior [23–26] . Examples are represented by the benchmark tasks in 

the RC area (e.g. [12,27–30] ), tasks in the domain of neural circuit 

models (e.g. [24,25,31] ), as well as real-world tasks, e.g. in the area 

of speech processing [12] and mobile traffic load estimation [32] . 

Although the methodology proposed in this paper is not put for- 

ward as a performance predictor for trained recurrent models, as 

an additional element of analysis here we use it to study the rela- 

tion between the memory and the regimes of DeepESN behaviors 

through the short-term Memory Capacity task [33] . 

The rest of this paper is organized as follows. In Section 2 we 

introduce the basic elements of RC and describe the DeepESN 

model. In Section 3 we provide the mathematical characterization 

of the stability analysis of DeepESNs in terms of the maximum lo- 

cal Lyapunov exponent. The outcomes of our experimental analy- 

sis are reported and discussed in Section 4 . Finally, conclusions are 

presented in Section 5 . 

2. Deep echo state networks 

Within the framework of randomized neural networks [34] , the 

RC paradigm [11,12] has attested as a state-of-the-art methodol- 

ogy for efficient RNN modeling. The most widely known model in 

this context is represented by the ESN [13,14,35] . From the archi- 

tectural perspective, an ESN comprises a recurrent hidden layer of 

non-linear units, called reservoir, and a feed-forward output layer 

of typically linear units, called readout. The essence of the ESN op- 

eration is that the reservoir part implements a set of randomized 

filters that serve to dynamically and non-linearly encode the input 

history into a high dimensional state space, where the task at hand 

can be approached satisfactorily even by a linear output tool. 

From a dynamical system point of view, the reservoir of an ESN 

computes a discrete-time input-driven non-linear dynamical sys- 

tem, such that at each time step the state evolution is ruled by 

the reservoir state transition function. By referring to the case of 

leaky integrator reservoir units [36] , at each time step t the reser- 

voir state update equation is given by: 

x (t) = (1 − a ) x (t − 1) + a tanh (W in u (t) + θ + 

ˆ W x (t − 1)) , (1) 

where x (t) ∈ R 

N R and u (t) ∈ R 

N U are respectively the reservoir 

state and the input at time step t, a ∈ [0, 1] is the leaking rate pa- 

rameter, W in ∈ R 

N R ×N U is the input weight matrix, θ ∈ R 

N R is the 

weight vector corresponding to the unitary input bias, ˆ W ∈ R 

N R ×N R 

is the recurrent reservoir weight matrix and tanh denotes the 

element-wise application of the hyperbolic tangent non-linearity. 

Typically, a null state is used as initial condition, i.e. x (0) = 0 . 

The output at time step t is computed by the readout as a linear 

combination of the activation of the reservoir units, according to 

the following equation: 

y (t) = W out x (t) + θout , (2) 

where y (t) ∈ R 

N Y is the output at time step t , W out ∈ R 

N Y ×N R is the 

output weight matrix and θout ∈ R 

N Y is the vector of weights cor- 

responding to the unitary input bias for the readout. 

A major peculiarity of the ESN approach is that only the readout 

undergoes a training process, such that the weights in W out and 

θout are adjusted on a training set in order to solve a least squares 

problem, typically in an off-line fashion and in closed form, using 

of pseudo-inversion or Tikhonov regularization. The reservoir’s pa- 

rameters are instead left untrained after initialization constrained 

to the dictates of the Echo State Property (ESP) [14] . The ESP states 

that the reservoir’s dynamics should asymptotically depend only 

on the driving input signal, while dependencies on initial condi- 

tions should vanish with time such that the state of the network 

tends to represent an “echo” of the input. Essentially, the ESP links 

the asymptotic behavior of the reservoir dynamics to the input sig- 

nal on which the reservoir is running. Although a certain research 

effort has being devoted in the last years to describe and under- 

stand more and more in depth the conditions under which the ESP 

holds (see e.g. [17,37,38] ), two basic conditions are widely adopted 

in literature for this purpose. Specifically, a sufficient condition and 

a necessary condition are applied to the weight matrix ˆ W , requir- 

ing to respectively control its 2-norm (i.e. its maximum singular 

value) and its spectral radius (i.e. the maximum among the eigen- 

values in modulus) to be below unity. In the following, we will 

refer to the standard ESN model, as described by Eq. (1) and (2) as 

shallow ESN . 

In this paper we are concerned with the extension of the shal- 

low ESN model towards a deep architecture, in which the recurrent 

component is hierarchically organized into a stack of reservoir lay- 

ers. The corresponding model is termed DeepESN, as introduced 

in [15,16] . From a general perspective, it is worth to note that, al- 

though several possible ways of constructing deep recurrent archi- 

tectures have been investigated in literature [3] , a stacked com- 

position of recurrent hidden layers is likely to represent the most 

common choice (see e.g. [4–6,8] ). 

Focusing on the recurrent part of the architecture of a Deep- 

ESN, graphically illustrated in Fig. 1 , at each time step the state 

computation follows a pipeline from the external input towards the 

higher layer. Specifically, at time step t the first layer is fed by the 

external input, whereas each layer in the hierarchy at depth higher 

than 1 is fed by the output of the previous layer at the same time 

step t . 

Keeping the basic notation introduced above for shallow ESNs, 

here we use N L to denote the number of reservoir layers in the 

stacked architecture, assuming for the ease of presentation that 

every layer has the same dimension (i.e. the same number of re- 

current units), which we indicate by N R . Moreover, for every i = 

1 , 2 , . . . , N L , we use x (i ) (t) ∈ R 

N R to indicate the state of the reser- 

voir in the i th layer at time step t . 

Viewing the DeepESN as a whole system, the global state 

space of the network can be considered as the product of the 

N L state spaces of the layers in the architecture. Accordingly, 

the global state of the DeepESN at time step t is represented 

by x g (t) = (x (1) (t) , x (2) (t ) , . . . , x (N L ) (t )) ∈ R 

N L N R . From a dynamical 

system point of view, the global dynamics of a DeepESN is ruled 

by its global state transition function F : 

F : R 

N U × R 

N R × . . . × R 

N R ︸ ︷︷ ︸ 
N L times 

→ R 

N R × . . . × R 

N R ︸ ︷︷ ︸ 
N L times 

(3) 
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