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a b s t r a c t 

Ensemble methods are a cornerstone of modern machine learning. The performance of an ensemble de- 

pends crucially upon the level of diversity between its constituent learners. This paper establishes a con- 

nection between diversity and degrees of freedom (i.e. the capacity of the model), showing that diversity 

may be viewed as a form of inverse regularisation . This is achieved by focusing on a previously published 

algorithm Negative Correlation Learning (NCL), in which model diversity is explicitly encouraged through 

a diversity penalty term in the loss function. We provide an exact formula for the effective degrees of 

freedom in an NCL ensemble with fixed basis functions, showing that it is a continuous, convex and 

monotonically increasing function of the diversity parameter. We demonstrate a connection to Tikhonov 

regularisation and show that, with an appropriately chosen diversity parameter, an NCL ensemble can 

always outperform the unregularised ensemble in the presence of noise. We demonstrate the practical 

utility of our approach by deriving a method to efficiently tune the diversity parameter. Finally, we use a 

Monte-Carlo estimator to extend the connection between diversity and degrees of freedom to ensembles 

of deep neural networks. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Ensemble methods are a cornerstone of modern machine learn- 

ing. Numerous applications have shown that by combining a mul- 

tiplicity of models we are able to train powerful estimators from 

large data sets in a tractable way. Successful ensemble perfor- 

mance emanates from a fruitful trade-off between the individual 

accuracy of the models and their diversity [10] . Typically diver- 

sity is introduced implicitly, by sub-sampling the data or varying 

the architecture of the models. In this paper we consider Nega- 

tive Correlation Learning (NCL) [32] , a powerful approach to learn- 

ing ensembles of neural networks, in which diversity is encouraged 

explicitly by appending a diversity penalty term to the loss func- 

tion. In the context of the recent breakthroughs in deep neural 

networks, ensembles of neural networks are likely to play an in- 

creasingly prominent role in machine learning applications. Thus, 

it is crucial that we obtain a deeper understanding of the dynam- 

ics of ensemble methods well suited to neural networks such as 

NCL. The statistical properties of NCL have already been studied 

in some detail [10,11,32] . Nonetheless, important questions remain 

surrounding the diversity parameter , the central hyperparameter in 

NCL which controls the level of emphasis placed upon the diversity 

penalty term. We shall address the following: 
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• How does the complexity of the ensemble estimator vary as a 

function of the diversity parameter? 

• How can we efficiently optimise the diversity parameter on 

large data sets? 

• Is the optimal value of the diversity parameter always strictly 

less than one? 

The core of our investigation lies in a degrees of freedom anal- 

ysis of NCL ensembles. Our contributions are as follows: 

• We derive a formula for the degrees of freedom under the as- 

sumption of fixed basis functions ( Section 3 ). 

• We show analytically that the degrees of freedom is mono- 

tonically increasing as a function of the diversity parameter 

( Section 3 ). 

• We present the surprising result that, in the presence of noise, 

the optimal value of the diversity parameter is always strictly 

less than one ( Section 4 ). 

• We develop an intriguing connection between NCL and 

Tikhonov regularisation ( Section 5 ). 

• We present an empirical verification of the theoretical results 

( Section 6 ). 

• We give a fast and effective procedure for tuning the diversity 

parameter based upon the degrees of freedom ( Section 7 ). 

• We investigate ensembles of deep neural networks, demon- 

strating empirically that the degrees of freedom also behave 

monotonically with respect to the diversity parameter in this 

setting ( Section 8 ). 
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The present paper extends a previously published conference 

paper [40] . The previous conference paper introduces the analytic 

formula for the degrees of freedom and demonstrates a computa- 

tionally efficient approach to tuning the diversity parameter based 

on the formula. In the present paper we have extended this work. 

Firstly, we present additional technical results: A connection be- 

tween NCL and Tikhonov regularisation and a result implying that 

the diversity parameter should never be set to precisely one in the 

presence of noise. Secondly, we used a Monte-Carlo estimator to 

conduct a detailed empirical investigation into the relationship be- 

tween the diversity parameter and degrees of freedom in ensem- 

bles of deep neural networks. 

We shall begin by introducing the background on ensemble 

learning and degrees of freedom in Section 2 . 

2. Background 

In this section we shall introduce the relevant background on 

Negative Correlation Learning (NCL) and degrees of freedom. We 

begin by setting the scene. Throughout this paper we consider 

the regression problem: We are given a data set D = { (x n , y n ) } N n =1 

with (x n , y n ) ∈ X × R . We shall assume that there is an underlying 

function μ : X → R such that for each n , y n = μ(x n ) + εn , where 

( εn ) 
N 
n =1 is a mean zero, independent and identically distributed 

random process. Our goal is to use the data D to provide an es- 

timator ˆ μ : X → R of the underlying function μ. 

2.1. Ensembles, diversity and the ambiguity decomposition 

Ensemble methods aggregate the predictions of a multiplicity 

of constituent models in order to provide a more powerful model 

with lower generalisation error. In order for an ensemble to out- 

perform a single model it is essential for its constituent models to 

be diverse [8] . In the classification setting, there is no straightfor- 

ward relationship between the performance of an ensemble and 

its diversity [17] ; the ensemble error can even exceed the aver- 

age error of its constituent learners. In the regression setting, how- 

ever, the squared error of the ensemble may be decomposed into 

the average squared error of its constituents minus the variance 

over the ensemble’s predictions. To be precise, suppose we have an 

ensemble F = { f m 

} M 

m =1 consisting of M functions f m 

: X → R . We 

let F := (1 /M) · ∑ M 

m =1 f m 

denote the ensemble function. For each 

(x, y ) ∈ X × R we have, 

ensemble error ︷ ︸︸ ︷ 
( F (x ) − y ) 

2 = 

average error ︷ ︸︸ ︷ 
1 

M 

M ∑ 

m =1 

( f m 

(x ) − y ) 
2 −

diversity ︷ ︸︸ ︷ 
1 

M 

M ∑ 

m =1 

( f m 

(x ) − F (x ) ) 
2 
. (1) 

This relationship is known as the ambiguity decomposition . It was 

observed by Krogh and Vedelsby who highlighted its importance 

for ensemble learning [28] . We refer to the variance over the en- 

semble’s outputs as the diversity . The ambiguity decomposition 

shows that the square error of the ensemble never exceeds the av- 

erage error of its constituent learners, and the extent to which the 

ensemble outperforms its constituents is quantified by its diversity. 

Hence, ensemble methods succeed by attaining a high degree 

of diversity without sacrificing too much individual accuracy. Typ- 

ically ensemble methods encourage diversity implicitly by mod- 

ifying the training data or model-structure for the constituent 

models. For example, Ada-boost encourages diversity by increas- 

ing the weight of examples mis-classified by previous models [15] , 

whereas random forests encourage diversity by training different 

trees with different bootstrap samples of the data and splitting 

branches along different subsets of features. However, the ambigu- 

ity decomposition (1) motivates a more direct approach: Negative 

Correlation Learning . 

2.2. Negative Correlation Learning 

The Negative Correlation Learning method, introduced by Liu 

and Yao [32] , encourages diversity explicitly by incorporating a 

diversity penalty term into the cost function. Suppose we have 

an ensemble F = { f m 

} M 

m =1 with each function f m 

: X → R chosen 

from a parameterisable family of neural networks H m 

, parame- 

terised by θm 

. Our ensemble estimator ˆ μ is given by the aver- 

age F = (1 /M) · ∑ M 

m =1 f m 

. The NCL rule, introduced by Liu and Yao 

[32] proceeds as follows. First each parameter vector θm 

is ran- 

domly initialised. Then, for each training example (x n , y n ) ∈ D, we 

update each θm 

in parallel according to 

θm 

← θm 

− α · ∂ f m 

∂θm 

·

⎛ 

⎝ 

accuracy ︷ ︸︸ ︷ 
( f m 

(x n ) − y ) −λ ·
diversity ︷ ︸︸ ︷ 

( f m 

(x n ) − F (x n )) 

⎞ 

⎠ , 

where α is a learning rate. Thus, each update consists of two com- 

ponents: The first pushes the output of the model in the direction 

of the target, making the model more accurate over the training 

data. The second pushes the individual model output away from 

average output, encouraging diversity. The NCL rule is equivalent 

to stochastic gradient descent with respect to the following loss 

function (with a scaled learning rate), 

L λ( F, x, y ) := 

accuracy ︷ ︸︸ ︷ 
1 

M 

M ∑ 

m =1 

( f m 

(x ) − y ) 
2 −λ ·

diversity ︷ ︸︸ ︷ 
1 

M 

M ∑ 

m =1 

( f m 

(x ) − F (x ) ) 
2 
. 

(2) 

We shall refer to L λ as the NCL loss. 

The study of NCL is important for several reasons. Firstly the 

NCL method has been shown to perform well on a wide vari- 

ety of regression problems, in some cases significantly outperform- 

ing other ensemble methods such as boosting and bagging [10,32] . 

Secondly, NCL holds a privileged place amongst ensemble meth- 

ods due to its explicit emphasis upon diversity. Thirdly, the past 

decade has seen phenomenal progress in deep learning with ar- 

tificial neural networks surpassing human performance on certain 

tasks [4,18,27,30,41] . NCL is specifically designed for generating en- 

sembles of neural networks. Hence, there is a great potential for 

future applications of NCL to deep neural networks. 

The key focus of this paper will be understanding the behaviour 

of the ensemble as a function of the diversity parameter λ, which 

explicitly manages a trade-off between the two competing objec- 

tives of accuracy and diversity. An important observation of Brown 

et al. is that the NCL loss may be rewritten in the following way 

[9,10] : 

L λ( F, x, y ) := (1 − λ) ·

individual accuracy ︷ ︸︸ ︷ 
1 

M 

M ∑ 

m =1 

( f m 

(x ) − y ) 
2 + λ ·

combined accuracy ︷ ︸︸ ︷ 
( F (x ) − y ) 

2 
. 

(3) 

Hence, when λ = 0 each function f m 

is trained individually and 

when λ = 1 , L λ is the squared error for the average F . Hence, NCL 

scales smoothly between training each of the functions f m 

individ- 

ually and training as a single combined estimator F . Brown et al. 

conducted a detailed analysis of NCL, relating the behaviour of the 

ensemble to the bias-variance-covariance decomposition [10] . In 

addition, Brown et al. gave an upper bound on the diversity pa- 

rameter λ, showing that for λ > M/ (M − 1) > 1 the Hessian matrix 

of the weights is non-positive semi-definite. It was subsequently 

shown that for any λ> 1, minimising L λ causes the weights to di- 

verge [39, Theorem 3] . Thus, we should restrict the diversity pa- 

rameter λ to the region λ∈ [0, 1]. Nonetheless, many open ques- 

tions remain. 
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