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a b s t r a c t 

Research on feature relevance and feature selection problems goes back several decades, but the impor- 

tance of these areas continues to grow as more and more data becomes available, and machine learning 

methods are used to gain insight and interpret, rather than solely to solve classification or regression 

problems. Despite the fact that feature relevance is often discussed, it is frequently poorly defined, and 

the feature selection problems studied are subtly different. Furthermore, the problem of finding all fea- 

tures relevant for a classification problem has only recently started to gain traction, despite its importance 

for interpretability and integrating expert knowledge. In this paper, we attempt to unify commonly used 

concepts and to give an overview of the main questions and results. We formalize two interpretations of 

the all-relevant problem and propose a polynomial method to approximate one of them for the impor- 

tant hypothesis class of linear classifiers, which also enables a distinction between strongly and weakly 

relevant features. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Feature relevance and feature selection have been active re- 

search areas for many years [1,2] . However, the impact of these 

fields only continues to grow as data becomes more and more 

abundant, and insight into and interpretation of models and 

frameworks are regarded as more and more important [3–5] , in 

particular in the light of easily fooled machine learning models [6] . 

Despite the fact that feature relevance is often discussed in the 

literature [2,7] , it is frequently poorly defined, and there are subtle 

differences between the feature selection problems studied in 

various papers. In addition, the problem of identifying all features 

relevant to a classification problem has only recently started 

to gain traction, despite its importance for interpretability and 

integrating expert knowledge. 

Early concepts of feature relevance were developed e.g. by Gen- 

nari et al. [8] and Kohavi and John [1] . The definitions by Kohavi 

and John continue to be used to this day, and form the basis of 

our analysis. Regarding feature selection, one branch of research 

is motivated by the fact that the presence of many irrelevant or 
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correlated features can severely impact the speed and general- 

ization ability of a machine learning algorithm. The identification 

of feature subsets that allow for good classification performance 

was the subject of the 2003 NIPS feature selection challenge [9] . 

A wide array of filter, wrapper and embedded methods to solve 

this problem have been proposed, including Lasso, Group Lasso or 

Cluster Elastic Net for regression and l 1 - or l 1 and l 2 -regularized 

SVM for classification, filters based on mutual information for 

nonlinear models, or techniques based on relevance learning of 

variables [1,10–16] . 

More recently, the problem of finding all relevant features has 

become a point of interest, motivated by a desire to use machine 

learning not only as a blind toolbox for classification or regres- 

sion, but to understand in detail the behavior of a machine learn- 

ing model, to integrate expert knowledge, or even to use machine 

learning in order to explore dependencies within the data. Unlike 

popular methods such as lasso, which identify only one minimal 

set of relevant features, the all-relevant feature-selection problem 

aims for an identification of all features that can be relevant for 

a given learning task; this is of particular interest in the case of 

feature correlations and redundancies where researchers might be 

interested in subtle markers that are otherwise shadowed by the 

more pronounced signals. The identification of all relevant features 

enables an interactive expert evaluation to decide which one of a 

set of highly correlated features is most reasonable in a given set- 

ting. 
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Methods that have been proposed for tackling the all-relevant 

feature-selection problem include Boruta [17,18] , which uses ran- 

dom forests to calculate importance measures for each feature, 

forward-backward selection schemes using various relevance 

measures, or, recently, the calculation of relevance intervals for 

linear regression and metric learning [19,20] . To some extent, 

Group Lasso and Elastic Net are also capable of giving a relevance 

ranking in the case of mutually redundant features in regression 

problems [14] . By relying on random forests as a universal approx- 

imator, Boruta addresses the problem of identifying all relevant 

features for the given classification task as a general problem. 

In contrast, Elastic Net and the relevance learning approach as 

proposed in the work [19,20] focus on feature relevance for linear 

regression or classification, respectively, disregarding possible 

nonlinear dependencies of features and output variable. Since 

linear models constitute a particularly relevant model class, this 

restriction of feature relevances constitutes an important special- 

ization of the general problem. Interestingly, the Elastic Net can 

be accompanied by mathematical guarantees under which model 

selection consistency holds [21] . In contrast, the approach for 

feature relevance in metric learning by Schulz et al. [20] , which 

deals with classification rather than regression, regards the valid 

interpretation of a specific given model only. 

In this paper, we propose a novel method to identify all rele- 

vant features for the hypothesis class of linear classifiers, and we 

derive a polynomial time learning algorithm for this task. More 

specifically, we address the more general problem of identifying 

all possible relevances of a given feature for any model with a 

given shape (e.g. linear) and small error for a given classification 

problem. The proposed method produces relevance intervals that 

indicate, in the case of linear models, the different levels of 

importance a feature is assigned by some linear classifier with 

low error. The benefit of these relevance intervals is that they not 

only offer a way to determine all relevant features, but they also 

enable a clear distinction between strongly and weakly relevant 

features for the given linear classification problem, a distinction 

that is typically missing in raw relevance profiles. We rely on two 

approximations: First, we formalize the objective as a constrained 

optimization problem that controls the classification error on 

the given data as well as the model’s generalization ability by 

limiting a norm of the weights, as is common in computational 

learning theory for linear systems. Secondly, we quantify the 

observed feature relevance by the used feature weight, which is 

also a common practice for linear models. Based on these two 

approximations, a mathematical formalization of the problem of 

determining feature relevance bounds becomes possible. 

The remainder of this paper is organized as follows: 

Section 2 gives an introduction into the concept of feature 

relevance and formalizes the two main feature selection problems: 

the minimal-optimal and the general all-relevant problems. We 

introduce the new concepts of the specific all-relevant problem 

as well as strong and weak relevance to a hypothesis class. In 

Section 3 we present a novel method for solving the specific 

all-relevant problem in the case of linear classifiers, by relying on 

two steps: First, an initial linear classifier is determined, namely 

an l 1 -SVM, which enables us to find bounds for the quality that 

can be reached in the given setting. Secondly, for each feature, 

a minimization and maximization, respectively, of the feature 

relevance is computed over all linear models with a similar quality 

as the initial one. We phrase these latter problems as constrained 

optimization problems, and we show that they can be rephrased 

as linear problems, i.e. the solution can be found in polynomial 

time. Section 4 contains experiments on artificial data where 

we demonstrate the behavior of the model and its superiority 

to alternatives such as Boruta or Elastic Net for the linear case. 

Further, we evaluate the stability of the model as compared to 

initial SVM solutions on real-world data. 

2. Feature relevance and feature selection problems 

In this section, we give a short introduction to the existing 

theory of feature relevance and the types of feature selection 

problems typically encountered in the literature. We extend the 

existing theory by introducing Definitions 5 and 6 that explore 

relevance for hypothesis classes. 

2.1. Feature relevance theory 

First, we introduce the notation used in the remainder of this 

paper. The starting point of our analyses is a binary classification 

data set 

{ (x 1 , y 1 ) , . . . , (x n , y n ) } ⊂ R 

d × {−1 , 1 } 
made up of data vectors x i and corresponding labels y i . The ( x i , y i ) 

are assumed to be independent observations of the random vari- 

ables ( X, Y ), X = (X 1 , . . . , X d ) , with distribution D over R 

d × {−1 , 1 } . 
A machine learning algorithm is defined by an inducer I that maps 

a training sample to some classification rule or hypothesis h : R 

d → 

{−1 , 1 } whereby the set Im(I) of classification rules the inducer can 

map to is called the hypothesis space H of I . An inducer typically 

attempts to find a classification rule that minimizes the generaliza- 

tion error 

L D (h ) = P (x,y ) ∼D [ h (x ) � = y ] = D({ (x, y ) : h (x ) � = y } ) . 
We call the X 1 , . . . , X d the features of the classification problem and 

the j -th entry x j of a data point x the value of feature j for x . 

The study of the relevance of features to a classification prob- 

lem can be motivated by improving the prediction performance of 

the predictors, making predictors quicker and cheaper or gaining a 

better understanding of the underlying processes of data genera- 

tion and model functionality [2] . Due to these diverse motivations 

and the difficulty in rigorously defining relevance, the current lit- 

erature deals with a broad spectrum of interpretations of feature 

relevance. 

Firstly, it is necessary to distinguish between two areas of pos- 

sible relevance, namely: 

1. The relevance of a feature to the label variable Y , or 

2. the relevance of a feature to the behavior of a particular classi- 

fication rule. 

Concerning the relevance of a feature to the label variable 

Y , in the following we use the definitions given by Kohavi and 

John [1] where S j denotes the set of all features except X j , i.e. 

S j = { X 1 , . . . , X j−1 , X j+1 , . . . , X d } , 
and for S = { X i 1 , . . . , X i | S| } ⊆ { X 1 , . . . , X d } and s ∈ R 

| S| , S = s denotes 

the event X i j = s j for j = 1 , . . . , | S| . 
Definition 1. A feature X j is strongly relevant to Y if there exists 

some x j ∈ R , y ∈ {−1 , 1 } and s j ∈ R 

d−1 for which P (X j = x j , S j = 

s j ) > 0 such that 

P (Y = y | X j = x j , S j = s j ) � = P (Y = y | S j = s j ) . 

It is weakly relevant to Y if it is not strongly relevant, but can be 

made strongly relevant by removing other features, i.e. there exists 

a subset of features S ′ of S j for which there exists some x j , y and s ′ 
with P (X j = x j , S 

′ = s ′ ) > 0 such that 

P (Y = y | X j = x j , S 
′ = s ′ ) � = P (Y = y | S ′ = s ′ ) . 
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