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a b s t r a c t 

Disease gene prioritization plays an important role in disclosing the relation between genes and diseases 

and it has attracted much research. As a consequence, a high number of disease gene prioritization meth- 

ods have been proposed. Among them, graph-based methods are the most promising paradigms due to 

their ability to naturally represent many types of relations using a graph representation. One key factor 

of success of graph-based learning methods is the definition of a proper graph node similarity measure 

normally measured by graph node kernels. However, most approaches share two common limitations: 

first, they are based on the diffusion phenomenon which does not effectively exploit the nodes’ context; 

second, they are not able to process the auxiliary information associated to graph nodes. 

In this paper, we propose an efficient graph node kernel, based on graph decompositions, that not 

only is able to effectively take into account nodes’ context, but also to exploit additional information 

available on graph nodes. The key idea is to learn and generalize from small network fragments present 

in the neighborhood of genes of interest. An empirical evaluation on several biological databases shows 

that our proposal achieves state-of-the-art results. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The advancement of experimental technologies allows ever 

larger amounts of data to be gathered from which powerful statis- 

tical analysis can be performed to gain deeper insights on natural 

phenomena. In Biological and Medical domains, high throughput 

techniques have exponentially lowered the cost to acquire infor- 

mation on cellular events. The abundance of data however needs 

to be matched by a proportional capacity of data elaboration. In 

the Biomedical field, disease-gene association recovery is a major 

goal that has received much attention. Despite significant progress 

in the last decades, the typical number of genes that can be 

associated to a genetic disease is quite limited. In order to find out 

the “missing” unknown set of related genes one can employ some 

form of reasoning by analogy and search in specific regions of the 

genome that contain large numbers of genes (candidate genes) 

known to be somehow related. In order to reduce the expensive 

empirical validation phase to as few candidates as possible, many 

gene prioritization methods, which automatically predict a list of 

candidate genes sorted according to the probability to be actually 

involved in the target disease, have been proposed in literature. A 
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quite exhaustive survey on disease gene prioritization methods can 

be seen in [6] or in [7–9] . Methods for gene-disease association 

are often based on a notion of similarity between genes inferred 

from the available knowledge encoded in biological databases. 

Many solutions employ machine learning methods to robustly 

predict gene-disease associations. A common strategy is to encode 

relations between functionally related genes in a network and 

then employ graph based techniques to make useful inferences, as 

done in [1,2,10] . 

A key element in graph-based disease gene prioritization ap- 

proaches is the definition of the node similarity measure. Node 

similarity is often measured by graph node kernels [2,11–13] . The 

state-of-the-art graph node kernels used to measure node simi- 

larity are based on the notion of “information diffusion”, which 

depends on the number of paths connecting two nodes in the 

graph. These graph node kernels suffer however when working 

with sparse graphs (i.e., graphs with a low number of links) be- 

cause of the following limitations. First, they are defined using 

a heat diffusion dynamics which sums up the contributions of 

all paths from one node to another one, disregarding the lo- 

cal topological context of the nodes and considering the sin- 

gle contribution of one path as independent with respect to the 

contributions of other paths. Second, they do not take into account 

auxiliary information (i.e. properties of a single node) associated to 
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individual nodes. These additional information can complement 

the information encoded in the graph topology and potentially sig- 

nificantly improve the expressiveness of the kernel. 

In this paper we define an expressive kernel that can improve 

the performance of several graph-based prioritization approaches. 

We propose a decompostional graph node kernel, named Conjunc- 

tive Disjunctive Node Kernel (CDNK) which is able to: i ) exploit the 

nodes’ context and ii ) make use of auxiliary node information. In 

particular, first the biological network is transformed into a set 

of linked sub-networks that still preserves all the available rela- 

tional information. Then the similarity between nodes (genes) is 

computed on the basis of the two neighborhoods rooted in each 

node. Finally we integrate additional node information using a con- 

volution operator between the information extracted by the graph 

topology and the auxiliary information encoded in a flexible way 

as real valued vectors. 

2. Background 

In this section, we first introduce definitions and notations that 

are used to define our proposed method. We then describe the 

state-of-the-art concerning graph node kernels. 

2.1. Definitions and notations 

A graph is a structure G = (V , E , L 1 , L 2 ) where V , E , L 1 , L 2 are 

the vertex (node) set, link (edge) set, discrete labeling fuction and 

real vector labeling function, respectively. The functions L 1 , L 2 are 

defined as: 

• L 1 : V � −→ L , where L is a set of discrete labels. L 1 assigns a 

single discrete label � ∈ L for each node v ∈ V , L 1 (v ) = � . 

• L 2 : V � −→ R 

n . L 2 assigns a single real vector la- 

bel (v 1 , v 2 , . . . , v n ) ∈ R 

n for each ndoe v ∈ V , L 2 (v ) = 

(v 1 , v 2 , . . . , v n ) . 

We define the length of a shortest path between u and v , de- 

noted as D(u, v ) , as the number of edges on a shortest path be- 

tween them. The neighborhood of a node u with radius r , N r (u ) = 

{ v | D(u, v ) ≤ r} , is the set of nodes at distance no greater than r 

from u . The corresponding neighborhood subgraph N 

u 
r is the sub- 

graph induced by the neighborhood (i.e. considering all the edges 

with endpoints in N r ( u )). The degree of a node u , deg(u ) = |N 

u 
1 
| , is 

the cardinality of its neighborhood for r = 1 . The maximum node 

degree in the graph G is deg(G ) = max v ∈ V deg(v ) . 

Definition 1. An adjacency matrix A is a symmetric matrix used 

to characterize the direct links between vertices v i and v j in the 

graph. Any entry A ij is equal to w i j ∈ R when there exists a link 

connecting v i and v j , and is 0 otherwise. 

Definition 2. The Laplacian matrix L is defined as L = D − A , 

where D is the diagonal matrix with non-null entries equal to the 

summation over the corresponding row of the adjacency matrix, 

i.e. D ii = 

∑ 

j A i j . 

Definition 3. The Transition matrix of a graph G, denoted as P , is 

a matrix with entries P i j = A i j / 
∑ 

i A i j . When considering a random 

walk in G, P ij can be interpreted as proportional to the probability 

of moving from node v i to node v j . 

2.2. Kernels on graphs 

Kernel methods have emerged as one of the most powerful 

framework in machine learning. They have been successfully ap- 

plied in various domains, due to their modularity, i.e. the definition 

of kernel functions is independent from the design of the learning 

algorithm. 

A kernel function can be considered as the similarity mea- 

sure between input instances, whatever the nature of the instances 

may be, e.g. vectors, sequences, trees, graphs. Formally, a kernel 

k : X × X � −→ R , where X is a set of entities, is a function satis- 

fying the following properties: i ) k is symmetric, i.e., k (x 1 , x 2 ) = 

k (x 2 , x 1 ) , where x 1 , x 2 ∈ X ; ii ) k is positive semi-definite, that is ∑ N 
i =1 

∑ N 
j=1 c i c j k (x i , x j ) ≥ 0 for any N > 0, c i , c j ∈ R , and x i , x j ∈ X . 

Canonical machine learning methods take vectorial data, i.e. nu- 

merical vectors that collect the results of measures on features of 

the input instances, as their input. However, there are many fields 

where data is naturally represented by structured forms, such as 

graphs, one of the most popular representations for structured 

data. Two interesting examples of domains involving graphs are 

Chemistry and the Web. In Chemistry, chemical compounds are 

represented via their molecular graphs and typical computational 

tasks consist in the prediction of their physicochemical properties. 

Thus, in this domain, the target function to learn is a mapping 

from one graph to a real value. The Web can be described as a 

huge graph, where nodes are web pages and edges are links from 

one page to another one. A typical task in this context is to au- 

tomatically predict the topics covered by the textual content of a 

page on the basis of the characteristics of web pages connected 

with it. So, the target function to learn is a mapping from one 

node of the graph to a set of discrete values. Therefore, the defini- 

tion of a kernel function for graphs has to take into account one of 

the two scenarios described above. In the first case, we talk about 

graph kernels, while in the second case we talk about graph node 

kernels. Both graph kernels and graph node kernels are widely ap- 

plied to build graph-based learning systems for fields ranging from 

Social Sciences, to Recommendation Systems, and Biology. 

In general, one important contribution with respect to the de- 

sign of kernels for structured data, and in particular for graphs, has 

been given by Haussler, who proposed a convolution-based frame- 

work for the definition of decompositional kernels [14] . In the 

following, we shortly describe some of the state-of-the-art graph 

(node) kernels underpinning our proposed approach. 

2.2.1. Graph kernels 

The task of designing efficient and expressive graph kernels 

plays an important role in the development of graph-based pre- 

dictive systems. Existing graph kernels are decompositional kernels 

and can be classified into two categories: sequence-based graph 

kernels and subgraph-based graph kernels. The sequence-based 

graph kernels decompose graphs into “parts” in sequence-based 

forms, such as paths and walks. Typical examples of sequence- 

based graph kernels are the product graph kernel [15] , and the 

shortest path kernel [16] . The subgraph-based graph kernels de- 

compose graphs into subgraphs. Examples include the Weisfeiler–

Lehman kernel [17,18] , and the Neighborhood Subgraph Pairwise 

Distance Kernel (NSPDK) [19] . This latter category of kernels are 

generally more effective because sub-graphs are more expressive 

than walks and paths. Moreover, they can be computed quite effi- 

ciently thanks to sparsity of representation that allows an explicit 

encoding of the graph via hash functions. In the following, we de- 

scribe NSPDK, since it is later adopted to develop the proposed 

graph node kernel (presented in Section 3 ). 

The NSPDK [19] is an instance of convolution kernel [14] where 

a given graph G is decomposed in features (pairwise neighbor- 

hood subgraphs) constituted by couples of subgraphs of radius r 

rooted at nodes of G which are at distance d . More formally, given 

two rooted graphs A u , B v , where u and v are nodes of G , the re- 

lation R r, d ( A u , B v , G ) is true iff D(u, v ) = d and A u 
∼= 

N 

u 
r is (up 

to isomorphism 

∼= 

) a neighborhood subgraph of radius r of G as 

well as B v ∼= 

N 

v 
r . Fig. 1 illustrates a pairwise neighborhood sub- 

graph. We denote with R −1 the inverse relation that returns all 

pairs of neighborhoods of radius r at distance d in G , R −1 
r,d 

(G ) = 
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