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a b s t r a c t 

Machine learning models in practical settings are typically confronted with changes to the distribution 

of the incoming data. Such changes can severely affect the model performance, leading for example to 

misclassifications of data. This is particularly apparent in the domain of bionic hand prostheses, where 

machine learning models promise faster and more intuitive user interfaces, but are hindered by their 

lack of robustness to everyday disturbances, such as electrode shifts. One way to address changes in 

the data distribution is transfer learning, that is, to transfer the disturbed data to a space where the 

original model is applicable again. In this contribution, we propose a novel expectation maximization al- 

gorithm to learn linear transformations that maximize the likelihood of disturbed data according to the 

undisturbed model. We also show that this approach generalizes to discriminative models, in particu- 

lar learning vector quantization models. In our evaluation on data from the bionic prostheses domain 

we demonstrate that our approach can learn a transformation which improves classification accuracy 

significantly and outperforms all tested baselines, if few data or few classes are available in the target 

domain. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Classical machine learning theory relies on the assumption that 

training and test data stem from the same underlying distribution; 

an assumption, that is oftentimes violated in practical applications 

[1] . The reasons for such violations are multifold. The training data 

may be selected in a biased way and not represent the “true” dis- 

tribution properly [1] , disturbances may lead to changes in the 

data over time [2] , or one may try to transfer an existing model 

to a new domain [3] . If such violations occur, the model may not 

accurately describe the data anymore, leading to errors, e.g. in clas- 

sification. 

This is particularly apparent in the domain of bionic hand pros- 

theses. By now, research prototypes of such prostheses feature up 

to 20 active degrees of freedom (DoF), promising to restore precise 

and differentiated hand functions [4] . However, controlling this 

many degrees of freedom requires a user interface which reacts 
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rapidly and is intuitive to the user. A popular approach to achieve 

such a user interface is to let users execute the desired motion 

with their phantom hand, which is still represented in the brain, 

and infer the desired motion via classification of the residual mus- 

cle signals in the forearm, such that the desired motion can then 

be executed by a bionic hand prosthesis in real-time (time delay 

below 200 ms) [5] . More precisely, if a user executes a motion 

with her phantom hand, the corresponding neurons in the brain 

are activated and propagate the motor command to the arm, where 

the residual muscles responsible for the hand motion are activated. 

This activity can be recorded via a grid of electromyographic (EMG) 

electrodes placed on the skin around the amputee’s forearm (see 

Fig. 1 , top left). The EMG signal contains information about the fir- 

ing pattern of the motor neurons, which in turn codes the intended 

hand motion. Therefore, one can classify the EMG signal with re- 

spect to the intended hand motion and use the classification result 

to control a prosthesis with little time delay in an intuitive way 

[5] . 

Unfortunately, such user interfaces are seriously challenged by 

changes in the input data distribution due to disturbances to 

the EMG signal, for example by electrode shifts, posture changes, 

sweat, fatigue, etc. [5,6] . As an example, consider Fig. 1 , which 
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Fig. 1. An illustration of electrode shifts in electromyographic (EMG) data. Top left: 

a grid of eight EMG electrodes placed around the forearm of a user. Cross section of 

the arm taken from the 1921 German edition of “Anatomie des Menschen”, which 

is in the public domain. Top right: example EMG signals from an eight-electrode 

EMG recording for two different hand motions (dashed and dotted lines) as well as 

resting (solid lines). Bottom left: the electrode grid is shifted around the forearm 

(electrode shift). Bottom right: another set of EMG signals from a shifted eight- 

electrode EMG recording for two different hand motions (dashed and dotted lines) 

as well as resting (solid lines). Due to the shifted signal, a model trained on the 

source data (top right) may misclassify shifted data (bottom right). 

illustrates the effect of an electrode shift around the forearm, lead- 

ing to different EMG sensor data, which in turn may cause an er- 

roneous classification decision. 

Changes between training and test distribution have been ad- 

dressed by different theoretical frameworks. Shimodaira has intro- 

duced the notion of covariate shift describing the case of a change 

in the prior distribution p( � x ) while the conditional distribution of 

the label P (y | � x ) remains unchanged [7] . A slightly different angle is 

taken by sample selection bias correction theory which assumes that 

a true underlying distribution P (y, � x ) exists from which some pairs 

are not available in the training data, thereby biasing the resulting 

machine learning model [1] . In contrast, the theory of concept drift 

models the prior distribution p( � x ) and the conditional distribution 

P (y | � x ) as varying in time. In particular, a covariate shift, meaning a 

change in p( � x ) over time while P (y | � x ) stays constant, is called vir- 

tual concept drift . A change in P (y | � x ) over time is called real concept 

drift . Prior research in concept drift has focused on either adapting 

a model over time to smooth and slow concept drifts or detecting 

a point of sudden concept drift, such that the old model can be 

discarded and a new model can be learned [2] . Recently, explicit 

long and short term memory models demonstrated an excellent 

ability to cope with different types of concept drift [8] . 

Our example of electrode shifts in bionic hand prostheses is 

best described by a sudden, real concept drift, in which case con- 

cept drift theory would recommend to discard the existing clas- 

sifier and re-train a new one [2] . However, re-learning a viable 

classifier model may require considerable amounts of new train- 

ing data to be recorded, which is inconvenient or even infeasible 

in user’s everyday lives. Instead, we would like to re-use an ex- 

isting classifier model and adapt it to the disturbed situation. This 

approach is motivated by prior research on myoelectric data which 

indicates that disturbances to electrode shifts are typically simple 

in structure, that is, they tend to be signal amplitude changes and 

shifts in the frequency spectrum [6] . Therefore, learning to transfer 

between the disturbed and the undisturbed setting may be consid- 

erably simpler compared to learning a new model [9] . 

Learning such transfers between domains has been studied in 

the fields of domain adaptation and transfer learning . Domain adap- 

tation refers to re-using an existing model in another domain 

where little to none new training samples are available [3] . Sim- 

ilarly, transfer learning refers to the transfer of knowledge from a 

source domain, where a viable model is available, to a target do- 

main, where the prior and/or conditional distribution is different 

[10] . In particular, rather than adjusting the probability distribu- 

tion in a given data space, transfer learning focuses on adapting 

the data representation . Conceptually, this fits well to our setting as 

the data representation in terms of EMG readings changes, while 

the underlying data source, i.e. the neural code of the desired mo- 

tion, remains the same. 

Our key contribution is an efficient algorithm for transfer learn- 

ing on labeled Gaussian mixture models relying on expectation 

maximization [11] . In particular, we learn a linear transformation 

which maps the target space training data to the source space 

such that the likelihood of the target space data according to the 

source space model is maximized. This approach generalizes to dis- 

criminative models, in particular learning vector quantization mod- 

els, such as generalized matrix learning vector quantization (GM- 

LVQ), or its localized version, LGMLVQ [12] . We evaluate our ap- 

proach on artificial as well as real myoelectric data and show that 

our transfer learning approach can learn a transfer mapping which 

improves classification accuracy significantly and outperforms all 

tested baselines, if few samples from the target space are available 

and/or these samples do not cover all classes. 

We begin by discussing related work, continue by introducing 

our own approach and conclude by evaluating our approach in 

comparisons to baselines from the literature. 

2. Related work 

We begin our comparison to related work by introducing some 

key concepts of transfer learning more formally. In our setting, 

we assume that a classification model f : X → { 1 , . . . , L } has been 

trained in some source space X = R 

m for some m ∈ N and we want 

to apply this model f in some target space ˆ X = R 

n for some n ∈ N . 

Note that we assume that the classification task itself is the same 

for both spaces. This makes our setup an instance of domain adap- 

tation [3] or transductive transfer learning [10] . In the example of an 

electrode shift on EMG data, we have m = n, but a simple applica- 

tion of our source space classifier f is hindered by a fact that the 

activation pattern is rotated in the feature space and thus the joint 

distribution p ˆ X ( ̂  x , ̂  y ) for data ˆ x ∈ 

ˆ X and labels ˆ y ∈ { 1 , . . . , L } in the 

target space differs from the joint distribution in the source space 

p X ( � x , y ) (see Fig. 1 ). 

One family of approaches to address domain adaptation prob- 

lems are importance sampling approaches, such as kernel mean 

matching [13] , which apply a weight to each data point in the 

source space and re-learn the model f with these weighted data 

points in order to generalize better to the target space [10] . The 

weights approximate the fraction 

p ˆ X ( � x ) 

p X ( � x ) 
, that is, the proportion of 

the probability of a point in the source space and in the target 

space. It can be shown that these weights minimize the empiri- 

cal risk in the target space, if the conditional distributions in both 

spaces are equal, that is, p ˆ X (y | � x ) = p X (y | � x ) [10] . However, this 

rather demanding assumption does not hold in our case because 
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