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a b s t r a c t 

As one of the most important information of the data, the geometry structure information is usually 

modeled by a similarity graph to enforce the effectiveness of nonnegative matrix factorization (NMF). 

However, pairwise distance based graph is sensitive to noise and can not capture the subspace structure 

of the data. Reconstruction coefficients based graph can capture the subspace structure of the data, but 

the procedure of building the representation based graph is usually independent to the framework of 

NMF. To address this issue, a novel subspace clustering guided convex nonnegative matrix factorization 

(SC-CNMF) is proposed. In this NMF framework, the nonnegative subspace clustering is incorporated to 

learning the representation based graph, and meanwhile, a convex nonnegative matrix factorization is 

also updated simultaneously. To tackle the noise influence of the dataset, only k largest entries of each 

representation are kept in the subspace clustering. To capture the complicated geometry structure of the 

data, multiple centroids are also introduced to describe each cluster. Additionally, a row constraint is 

used to remove the relevance among the rows of the encoding matrix, which can help to improve the 

clustering performance of the proposed model. For the proposed NMF framework, two different objective 

functions with different optimizing schemes are designed. Image clustering experiments are conducted 

to demonstrate the effectiveness of the proposed methods on several datasets and compared with some 

related works based on NMF together with k -means clustering method and PCA as baseline. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

As one feature extraction technique [1,2] , nonnegative matrix 

factorization (NMF) has became more and more popular in the 

fields of the computer vision and pattern recognition thanks to 

the pioneering work of Lee and Seung [3] . In their works, they 

point out that the nonnegative constraints on the component ma- 

trices can automatically lead to the parts-based representation of 

the data which is closely related to the perception mechanism. 

Besides this finding, a simple yet effective algorithmic procedure 

is another contribution of their work. Due to these advantages of 

NMF, the research around the original NMF and its variants is be- 

coming increasingly flourishing [4–9] . 

The original NMF method tries to factorize the original nonneg- 

ative data matrix into two nonnegative factorial matrices whose 

product can approximate the original data matrix. To improve the 

sparseness of NMF, Hoyer [10] has proposed nonnegative sparse 

coding (NSC) in which a � 1 -norm sparse constraint is imposed on 

∗ Corresponding author. 

E-mail addresses: guosheng.cui.opt@gmail.com (G. Cui), xuelong_li@opt.ac.cn (X. 

Li), dongyongsheng98@163.com (Y. Dong). 

the encoding matrix. Localized NMF (LNMF) [11] imposes some 

local constraints on the factor matrices to help learning a more lo- 

calized features of the data. Both these two methods can ensure a 

parts-based representation. For unsupervised variants of NMF, ge- 

ometry information is another important information that is fre- 

quently used to reinforce the effectiveness of NMF methods. Graph 

regularized NMF (GNMF) [12] first considers to improve the perfor- 

mance of NMF from the geometric perspective. An affinity graph is 

constructed to encode the local data distributing structure. With 

this information, the data local geometry structure in the original 

space can be retained in the learned low dimension space. Neigh- 

borbood preserving NMF (NPNMF) [13] tries to encode the local 

geometry structure with the coefficients of the k nearest neigh- 

bors. Although, NPNMF does not use the Heat Kernel to mea- 

sure the similarity of the nearest neighbors. But the selection of 

the k nearest neighbors is still based on the Euclidean distance. 

In order to learn a discriminative and sparse representation, Ren 

et al. [14] add a rank constraint into the framework of NMF and 

proposed NMF with regularizations (RNMF). Nie et al. propose a 

semi-NMF named robust manifold NMF (RMNMF) [15] to improve 

the robustness of NMF. RMNMF uses � 2,1 -norm to measure the 

residual of the approximation instead F -norm which is sensitive to 
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outliers. Both RNMF and RMNMF have promoted the performance 

of NMF from different views, but they have one common regular- 

izer in their object function, that is graph Laplacian regularizer. Ac- 

tually, graph Laplacian regularizer is widely used in various NMF 

frameworks since its first utilization in GNMF. 

For supervised NMF methods, label provided by the data is used 

to encode the discriminative structure of the data. Discriminative 

NMF (DNMF) [16] incorporates the Fisher’s criterion, which is de- 

fined on the encoding matrix, into the framework of NMF directly. 

An et al. propose a method named manifold-respecting discrimi- 

nant NMF (NMF-kNN) [17] in which two graph Laplacian regular- 

izers are included. Penalty graph is designed to describe the dis- 

tinctness among the different classes and intrinsic graph is used to 

encode the local data distributing structure within the same class. 

Manifold regularized discriminative NMF (MDNMF) [18] also uses 

these two graphs to capture the discriminative information of the 

data. The difference is that, NMF-kNN uses the difference of these 

two regularizers and MDNMF uses the ratio of these two regulariz- 

ers. Constrained NMF (CNMF) [19] incorporates the label constraint 

matrix into the cost function of NMF directly. Graph regularized 

discriminant NMF (GDNMF) [20] approximates the label indicating 

matrix with the product of the encoding matrix and a random ma- 

trix. In addition, a Laplacian graph is also constructed using label 

information in this method. 

Considering that a Laplacian graph is constructed by a simi- 

larity matrix, it can also be called a similarity graph, and used 

for capturing latent structure information of the data. Generally 

speaking, there are two ways to build a similarity graph: one way 

is based on pairwise distance (e.g. Euclidean distance), another 

way is based on reconstruction coefficients (e.g. sparse represen- 

tation). Pairwise distance based graph is usually constructed us- 

ing the Euclidean distance that fails to explore the multi-subspaces 

structure of the data. However, reconstruction coefficients based 

graph can be used to capture multi-subspaces structure of the data 

when building it by using subspace representation coefficients. In 

this paper, we propose a novel subspace clustering guided con- 

vex nonnegative matrix factorization (SC-CNMF). SC-CNMF uses 

nonnegative subspace clustering to guide convex nonnegative ma- 

trix factorization. In this framework, the learning of reconstruction 

coefficients based graph and the convex nonnegative matrix fac- 

torization can be implemented simultaneously. To our knowledge, 

this kind of unified framework has not been proposed before. 

The contributions of the proposed model are listed as follow: 

• A unified NMF framework named subspace clustering guided 

convex nonnegative matrix factorization (SC-CNMF) is pro- 

posed. In this framework, nonnegative subspace clustering 

term, which can capture the multi-subspaces structure of the 

data, is incorporated to guide the learning of convex NMF. The 

nonnegative constraint that is imposed on the subspace clus- 

tering facilitates the optimizing of the proposed unified frame- 

work. 

• A local subspace constraint is imposed on nonnegative sub- 

space clustering term to improve the robustness of the pro- 

posed model. This constraint is that only s largest values are 

kept in each column of the learned representation matrix that 

will be used to construct the similarity matrix in each iteration. 

The two different ways of using this constraint lead to two dif- 

ferent implementations of the proposed model, SC-CNMF 1 and 

SC-CNMF 2 . And two slightly different optimizing schemes are 

designed for these two methods. 

• Image clustering experiments are conducted on six image 

datasets in which the proposed methods are compared with 

several related NMF methods together with k -means clustering 

method and PCA as baseline. The experimental results reveal 

the effectiveness of the proposed methods. 

The rest of paper is organized as follow: in Section 2 , some 

related NMF methods are briefly reviewed in Section 2.1 , then 

subspace clustering is briefly introduced in the Section 2.2 . In 

Section 3 , the details of the proposed model and its two imple- 

mentations together with their optimizing schemes are described. 

The experimental results and analysis are in Section 4 . The conclu- 

sion of this paper is made in Section 5 . 

2. Reviews of some related works 

2.1. NMF, GNMF and convex NMF 

Nonnegative matrix factorization (NMF) [3] tries to find 

two nonnegative factorial matrices, U ∈ R 

m ×k 
+ and V ∈ R 

k ×n 
+ , 

whose product can approximate the original data matrix X = 

{ x 1 , x 2 , . . . , x n } ∈ R 

m ×n 
+ . The objective function of the standard NMF 

with F -norm is like follow: 

D NMF = || X − UV || 2 F . (1) 

In this equation, we can see that, each original data point can 

be represented with the linear combination of the column vectors 

in U weighted by the corresponding column vector in V . So ma- 

trix U can be regarded as a basis matrix and matrix V is an en- 

coding matrix. Eq. (1) is non-convex for U and V . But when one 

of these two matrices is fixed, Eq. (1) is convex for the rest one 

matrix. Therefore this equation can be minimized with an iterative 

updating strategy. The nonnegative constraints imposed on U and 

V cause that the updating rules only allow additive operations. To 

this end, the following updating rules are obtained: 

U = U �
X V 

T 

UV V 

T 
, 

V = V �
U 

T X 

U 

T UV 

, (2) 

where � denotes the element-wise multiplication and the division 

used in above equations are also element-wise. 

To make use of the latent embedding manifold structure of the 

data, Cai et al. [12] incorporate a Laplacian regularizer into the 

framework of the standard NMF method and propose graph regu- 

larized NMF (GNMF). To capture the manifold structure of the data 

in the original space, a Laplacian graph is constructed which can 

describe the local geometry structure of the data. The local near 

neighbor relationship in the original space, i.e. X , can be kept in 

the learned low-dimension space, i.e. V , by minimizing the graph 

Laplacian regularizer. With this regularizer, the objective function 

of GNMF is as follow: 

D GNMF = || X − UV || 2 F + αtr(V L V 

T ) , (3) 

where α is a parameter to control the influence of the Laplacian 

regularizer. 

Convex NMF [21] constraints each column of the basis matrix to 

be a convex combination of the data points for the interpretability 

reason. In Convex NMF, the basis matrix can be denoted as U = XG, 

then its objective function can be written as 

D con v exNMF = || X − X GV || 2 F . (4) 

The advantage of this convex constraint is that each column of U 

can be interpreted as a weighted sum of certain data samples. 

2.2. Subspace clustering 

Subspace clustering can find out latent subspace structure of 

the data. Generally, subspace clustering can be divided into three 

categories: algebraic algorithms, statistical methods and spectral 

clustering based methods. Among all these three kind of subspace 

clustering methods, the performance of spectral clustering based 
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