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a b s t r a c t 

Low rank and sparse matrix estimation has been attracting significant interest in recent years. Generally, 

such a problem is modeled by imposing the l 1 -norm to pursuit a sparse and low rank matrix decom- 

position. However, the l 1 -norm is only a conservative sparse regularizer which leads to over-penalty. 

To remedy this issue, this paper presents an adaptive regularizer learning strategy to provide advanced 

low rank solution and avoid over-penalty. The new method is termed ARLLR. In the Bayesian inference, 

the prior distribution of the singular values is assumed to be Laplacian with hyper scale parameters. 

With the help of full Maximize A Posterior (MAP) , we learn the optimal scale parameters by revealing its 

correlation to the inherent variables. We indicate that the adaptively estimated regularizer corresponds 

to the log function and the global minimum is given for the proposed non-convex problem. Furthermore, 

by employing the adaptive regularizer on the sparse part, a double log regularized low rank and sparse 

matrix decomposition model which is denoted by ARLLRE, is proposed. The ADMM algorithm is utilized 

to solve the ARLLRE problem, and the convergence of the algorithm is proved. In experiment, we 

use ARLLR for image denoising and ARLLRE for foreground and background extraction, respectively. 

Experimental results show that ARLLR enhances image denoising performance compared with the 

state-of-the-art image denoising algorithms in both quantity value and visual quality. Meanwhile, ARLLRE 

delivers excellent results in foreground and background extraction. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The low rank structure of a given matrix has been exten- 

sively exploited in many signal processing applications, such as 

subspace clustering [1–4] compressed sensing [5] , background 

modeling [6,7] , [8–12] and especially for image restoration [13–

15] and recommendation system [16–19] . It is observed that the 

video sequences when vectorized as a matrix contain a low rank 

background [6] and a sparse foreground movements. In image 

restoration, the matrix formed by non-local similar image patches 

is usually assumed to be a low rank matrix and such low rank 

prior gains significant improvements for image denoising problem. 

In factor models [20] , each factor is a preference vector, and a 

user’s preferences correspond to a linear combination of these 

factor vectors, with user-specific coefficients, training such a linear 

factor model amounts to approximating the empirical preferences 

with a low-rank matrix. 
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Exploiting the low rank structure of a matrix leads one to 

deal with the low rank matrix approximation problem (LRMA). 

Generally, minimizing the rank function in LRMA is ill-posed and 

NP-hard for some specific problems [21] . A tractable solution is to 

replace the rank function by the convex the nuclear norm, which 

gives the well known nuclear norm minimization (NNM) problem 

[22] defined as 

min 

X 

1 

2 τ
‖ Y − X ‖ 

2 
F + λ‖ X ‖ ∗ (1) 

where ‖ X‖ ∗ = 

∑ r 
i =1 | σi | and σ i is the i th singular values of the 

matrix X , τ is a parameter that correlated with the variance of 

the data term and λ is the regularization parameter. The nuclear 

norm has been widely studied as a surrogate of the rank function, 

and theoretical analysis [6] guarantee that under some certain 

conditions the nuclear norm can accurately recover the low rank 

structure of a matrix. Cai et al., [22] proved that the NNM problem 

(1) can be solved in closed form and proposed the well known 

singular value thresholding method. 

Albeit its success, the NNM (1) is still sub-optimal for low rank 

approximation, since the nuclear norm is only a loose approxima- 

tion of the rank function. Meanwhile, the l 1 -norm may cause over- 
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penalty and result in a biased solution. To alleviate the problem, 

some non-convex regularizers have been proposed, which mainly 

include Smoothly Clipped Absolute Deviation(SCAD) [23] , Mini- 

max Concave Penalty (MCP) [24] , Capped L1 [25] , Exponential-Type 

Penalty (ETP) [26] , Geman [27] , Laplace [28] and correntropy in- 

duced metric(CIM) [29] . The non-convex regularization often per- 

forms better than the l 1 -norm [30] and they are proposed to ap- 

proximate the rank function when applied on the singular val- 

ues of the matrix, such as the Schatten- p norm (0 < p < 1) [31] . 

Yet, they are hand-crafted functions with some tunable parame- 

ters and lack of statistical reasonability. Moreover, it still remains 

unclear what non-convex function can better fits the problem. In 

the Bayesian perspective, the regularizer term in (1) is closely re- 

lated to the prior distribution of the inherent variables. Proper reg- 

ularizer should fits well the prior knowledge, and accompany with 

the likelihood to compose an advanced model. 

In this paper, by taking full advantage of the Bayesian inference, 

we propose to learn an adaptive regularizer. The new regularizer 

adaptively fits the prior distribution of the singular values and pro- 

vides a more accurate estimation for solving low rank matrix ap- 

proximation problem (ARLLR). Generally, the singular values of a 

matrix follows Laplacian distribution with a hyper scale parame- 

ters. In this paper, rather than using hand-tuned scale parameters 

or given regularizers, and by maximizing the full MAP , we show 

that the prior distribution of the inherent variable corresponds to 

the log function as regularizer. Based on the analysis, we make 

an instructive conclusion that the log function is statistically more 

suitable for low rank approximation among the non-convex func- 

tions. Moreover, we prove that the ARLLR ( log regularizer applied 

on singular values) has closed form global optimum solution, al- 

though the function is non-convex. 

In experiments, we find that the log regularized LRMA method 

well preserves the large singular values and penalizes more on the 

small ones. In this scene, the regularizer is go by the name of 

adaptive regularizer, which has significant meanings in real appli- 

cations since large singular values of a matrix are associated with 

the major projection directions in a low dimensional space, which 

should be preserved and the small ones is associated with noise 

which should be discarded [32] . The adaptivity is not only mean- 

ingful for the singular values of a low rank matrix, but also appro- 

priate for a sparse matrix. To take one step forward, we propose 

a double log regularized model for low rank and sparse matrix 

decomposition (known as RPCA [6] ), which we term ARLLRE. The 

ADMM algorithm is used to solve the ARLLRE problem. We prove 

that our algorithm for solving the two variables non-convex prob- 

lem converges to a stationary point of the ARLLRE problem. From 

the process of ADMM algorithm, it can be seen that the low rank 

parts and the sparse parts are successively separated. 

In application, ARLLR is used for image denoising. It is observed 

that the matrix constructed by the vectorization of nonlocal simi- 

lar image patches is of low rank and various low rank approxima- 

tion methods have been used for image denoising [13,15,33–37] . 

The denoising results of ARLLR are compared with the state-of- 

art image denoising methods. Meanwhile, ARLLRE is used for fore- 

ground and background extraction and the results are compared 

with [6,32,38–40] . Extensive experimental results verified the su- 

periority of our method over the compared methods. 

This paper is an substantial extension of our pioneer conference 

paper [41] , compared to [41] , we make following improvements: 

• We present detail analysis of the global optimal of the proposed 

non-convex model, and show that the global optimal can be 

easily obtained. 

• The non-convex adaptive regularizer is extended to low rank 

and sparse matrix decomposition, and a double log regularized 

model ARLLRE is proposed; 

• The ADMM algorithm is applied to solve the ARLLRE model, and 

the convergence is proved; 

• The ARLLRE model is employed for texture removal and fore- 

ground background extraction. The implementation delivers ex- 

cellent results and confirms the validity of this new model. 

The rest of this paper is organized as follows. Section 2 provides 

a brief survey of the related works. Section 3 first presents the 

Bayesian inference of our ARLLR model and then give the corre- 

sponding regularization. In Section 4 , the ARLLR model is extended 

to low rank and sparse matrix decomposition ARLLRE. In Section 5 , 

extensive experiments are conducted to evaluate the performance 

of ARLLR and ARLLRE. Finally, several concluding remarks are given 

in Section 6 . 

2. Related works and preliminary 

In this section, we briefly review some related works and pre- 

liminaries which help strengthen our presentation. 

2.1. Applications of the low rank matrix approximation 

The low rank matrix approximation problem has been ex- 

tensively used in the past decades, with applications ranging 

from computer vision, scientific computing and machine learning 

[1,6,20,32] . One of the most representative application is to solve 

the Recommendation system problem, such as [16–19] use non- 

negative low rank matrix factorization to estimate the low rank 

structure of the data for recommendation system. In image de- 

noising, the matrix constructed by the similar image patches is as- 

sumed to be a low rank matrix and nuclear norm minimization al- 

gorithm has been successfully used for image denoising [32,35,42] . 

In video background extraction, the background of the video se- 

quence which is captured by a surveillance camera and taken un- 

der a static scenario naturally share the low rank property, algo- 

rithms such as: RPCA [6,32,40] , GoDec [10,11] are able to accurately 

extract the background. The recent work [12] improved the GoDec 

[10] by introducing correntropy and it is robust to varies noise and 

outliers compared to GoDec [10] . Most of these low rank approxi- 

mation algorithms are based on nuclear norm minimization (NNM) 

problem. 

2.2. NNM to generalized low rank approximation 

The closed form solution of the NNM problem (1) is given by 

singular value thresholding [22] as: 

X = U S λ,τ (�) V 

T , (2) 

where S λ,τ (�) is the soft thresholding function operating on the 

diagonal matrix � with parameters λ and τ . For each diagonal 

elements �ii in �, the function S λ,τ is defined by: 

S λ,τ (�) ii = max ( | �ii | − λτ, 0 ) . (3) 

In Eq. (3) , the parameter τ is correlated with the noise level, 

and the parameter λ comes from the prior knowledge of the in- 

herent variable which is crucial for characterizing the prior distri- 

bution of the data. Usually, the parameter λ is set uniformly for 

all singular values, composing an easily solved convex objective 

function (1) . However, as argued in [32] , assigning uniform regu- 

larization parameter λ on the singular values is inferior. Gu et al., 

[32] proposed to assign different weights on the singular values 

and achieved the state-of-the-art image denoising performance. 

Some recent works [30,43] have shown that non-convex sparse 

promoting regularizer perform better than the l 1 -norm, and 

many non-convex models have been proposed such as: l p -norm 

(0 < p < 1) [44] , Smoothly Clipped Absolute Deviation (SCAD) [23] , 
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