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a b s t r a c t 

In previous works, recurrent inhibitory loops with state-dependent propagation delays, firing process and 

absolute refractory period have been successfully employed to solve capacity-simplicity dilemma in asso- 

ciative memory attractors networks. But in realistic networks, usually there are more than two or three 

neurons. In order to disclose their natures, in this paper, we consider the dynamics of periodic patterns 

mainly in a four-neuron recurrent inhibitory loop. We explicitly address how to give rise to its enormous 

periodic patterns and obtain their existence conditions. At last, we further execute numerical simulations 

to address the difference from the five-neuron loop and demonstrate similar periodic patterns. Even for 

smaller τ , the coexistence of three periodic patterns is found in four-neuron loop and that of four periodic 

patterns is discovered in five-neuron loop. New periodic patterns are also generated and the maximum 

values of τ for the existence of possible periodic patterns also decrease with the increment of the num- 

ber of neurons in loops. They will improve loops performance greatly. Our research shows that delays are 

significant and remarkable for the dynamics of recurrent inhibitory loops, since loops with more neu- 

rons have more complicated dynamical behavior and loops performance are also enhanced due to the 

the increase of synaptic delay and propagation delay. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

There are plenty of neurons in a living nervous system and 

recurrent inhibitory loops involving two or more neurons are ubiq- 

uitous [1] . Except for the study of the neural network or the bio- 

logical neural network, it also has been simulated to realize some 

performances of the living nervous system. The nervous network 

has a wide range of applications including pattern recognition 

[2,3] , signal processing [4] , associative memory [5] , knowledge 

engineering, expert systems, optional regrouping [6] , robot control 

and so on [7] . Also it has been employed successfully to develop 

the neuromorphic computers, i.e., the computers with integrated 

biological neurons, by researchers [8–11] and by some companies, 

such as IBM [12] . Especially, deep learning is rooted in and sup- 

ported to develop greatly by neural networks successfully by Z. 

Wang et al. [13,14] , Fan et al. [15] , Schmidhuber [16] , Cha et al. [17] , 

Ghazi et al. [18] , Sun et al. [19] and Jia et al. [20] , Ronao and Cho 

[21] , Kelley et al. [22] , Shin et al. [23] , Cha et al. [24] , Hu et al. [25] . 

An excellent review of deep neural network architectures and their 
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applications was conducted and applications of deep learning 

techniques on some selected areas (speech recognition, pattern 

recognition and computer vision) were highlighted [13] . For the 

first time, as one of the latest methodologies in machine learning, 

the deep belief network was applied to quantitative analysis of 

GICS images [14] . At the same time, the bio-inspired computing 

models or the living neurons’ hardware including the artificial 

neural networks are the emerging tendency and tool [26–29] . 

In the future, we will consider these models to improve the 

performance of the neural networks. 

In general, when a neuron excites, nerve impulse is delivered 

from the axons of the neuron to the dendrites of other neurons. 

Delays are intrinsic properties of nervous systems and are unavoid- 

able in electronic implementation due to distances among neurons, 

axonal conduction times and the finite switching speeds of am- 

plifiers [30] . Effects of delays on the dynamics of neural networks 

have been investigated in many works [31–34] . In fact, dynamics 

of delayed neural networks is very complex and complicated bi- 

furcation may occur when parameters vary [35,36] . So it is inter- 

esting to investigate periodic patterns of delayed neural networks 

as in [37] and [38] . We all know that the action potential of a 

neuron will rise when delivering excitatory signal and drop when 
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delivering inhibitory signal. However the effective time of up or 

down is uncertain because of the existence of the firing process 

period and the absolute refractory period. Therefore, propagation 

delays corresponding to different periodic patterns are significantly 

important. 

Periodic patterns exhibiting in neural networks have been 

linked to a variety of rhythms, which are associated with impor- 

tant behavioral and cognitive states in the nervous system, includ- 

ing attention, working memory, associative memory, object recog- 

nition, sensory motor integration and perception processing. Thus, 

to study the neuron dynamics of the realistic models, many works 

have focused on the multi-stability in delayed neural networks, es- 

pecially in delayed recurrent inhibitory loops (see [37–39] ) where 

the capacity-simplicity dilemma in associative memory attractor 

networks have been solved successfully. 

In this paper, incorporating the firing process and the absolute 

refractory period, we investigate the delayed recurrent inhibitory 

systems mainly with four neurons and locate the coexistence of 

multiple periodic patterns in them due to different state depen- 

dent propagation delays and synaptic delay. Based on the works 

of the two-neuron and three-neuron recurrent inhibitory systems 

(see [37–39] ), we introduce propagation delays to indicate the in- 

hibitory post-synaptic potential as a feedback of a single neuron 

and aim to investigate how the number of neurons affects the dy- 

namics of system in the recurrent inhibitory loop since usually 

there are no less than 2 or 3 neurons in the realistic loops. We also 

display that the interaction can generate four types of basic oscil- 

lations exhibited by neuron E 1 , which are the basic building blocks 

of periodic patterns. More precisely, we explore periodic patterns 

composed of only W u and W d − oscil l ations in Section 4.1 and self- 

inhibitory periodic patterns in Section 4.2 and other kinds of pe- 

riodic patterns in Sections 4.3 and 4.4 . Furthermore, we gain the 

coexistence of multiple stable periodic patterns and their bifurca- 

tions with the varying synaptic delay. And we successfully demon- 

strate our theoretical results by numerical simulations. But due to 

the increasing computational complexity, for the five-neuron sys- 

tem, only numerical simulations are provided to show the exis- 

tence and coexistence of some periodic patterns and furthermore 

to indicate the more complicated dynamical behavior for systems 

with more neurons (see supplementary materials). 

The rest of this paper is organized as follows. In Section 2 , we 

formulate the integrate-and-fire model for the recurrent inhibitory 

loop with three excitatory neurons and one inhibitory neuron. We 

also exhibit that the loop can generate four types of basic oscilla- 

tions. In Section 3 , we introduce the propagation delays to indicate 

the inhibitory post-synaptic potential as a feedback of neuron E 1 
and discuss the general principles on how these basic oscillations 

interact to generate the periodic patterns of E 1 . In Section 4 , the 

theoretical results are established for periodic patterns of E 1 . Nu- 

merical simulations and conclusion are presented in Sections 5 and 

6 , respectively. Numerical simulations of the five-neuron system 

are presented in Supplementary Materials. For the clarity of the 

computation in this paper, the flow chart is presented in Fig. 1 . 

2. Model and its basic oscillatory patterns 

2.1. The model of recurrent inhibitory loop 

Consider the four-neuron recurrent inhibitory loop in Fig. 2 . 

This loop consists of four neurons E 1 , E 2 , E 3 and I , where E 1 , 

E 2 , E 3 are excitatory and I is inhibitory. The basic neural signal 

processing of such a loop is described by the integrate-and-fire 

model, and hence the temporal evolution of the action potentials 

V E i , i = 1 , 2 , 3 and V I of neurons is governed by the following sys- 

tem, ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

˙ V E 1 ( t ) = −V E 1 ( t ) − F I ( t ) + I 0 , 

˙ V E 2 ( t ) = −V E 2 ( t ) + F E 1 ( t ) , 

˙ V E 3 ( t ) = −V E 3 ( t ) + F E 2 ( t ) , 

·
V I ( t ) = −V I ( t ) + F E 3 ( t ) , 

(1) 

where I 0 is the stimulus (assumed to be a constant), F E 1 (t) 

describes the excitatory feedback from neuron E 1 to E 2 , F E 2 (t) 

describes the excitatory feedback from neuron E 2 to E 3 , F E 3 (t) de- 

scribes the excitatory feedback from neuron E 3 to I, F I ( t ) describes 

the inhibitory feedback from neuron I to E 1 . The first term in the 

right hands of the equations in system (1) determines the effective 

timing of the feedback in the absolute refractory period, a short 

period after the firing of a spike during which the neuron is not 

affected by inputs at all. The absolute refractoriness allows the 

membrane potential to decay back from the hyperpolarization (af- 

terpotential) to the resting potential even if feedback is delivered 

during this period. The second term in the right hands in system 

(1) describes the excitatory or inhibitory feedback from the last 

neuron, which makes the action potentials rise or fall. 

For E 1 , E 2 , E 3 , I , once their potentials reach the given threshold 

ϑ, the fires follow a pattern governed by the following piecewise 

linear function, 

V f (t) = 

⎧ ⎨ 

⎩ 

ϑ + 

c−ϑ 
s 1 

(t − t f ) if t ∈ [ t f , t f + s 1 ) , 

V r + 

c−V r 
T F −s 1 

( t f + T F − t) if t ∈ [ t f + s 1 , t f + T F ] , 

where c is the peak value and c > ϑ, V r is the reset potential 

( V r < 0), T F is the spike width, t f is the firing time. Notice that the 

action potential increases from ϑ to c in the interval [ t f , t f + s 1 ) 

and then decays to V r in the interval [ t f + s 1 , t f + T F ] . t f satisfies 

the threshold condition, namely, 

t f : V (t f ) = ϑ and V (t f − ε) < ϑ for any small ε > 0 . 

There is an absolute refractory after the firing process and the 

action potential is given by 

V f (t) = V r e 
−(t−t f −T F ) + E[1 − e −(t−t f −T F ) ] for t ∈ [ t f + T F , t f + T F R ] , 

where E is a constant and E > 0. T Re : = T F R − T F is the duration of 

the absolute refractory period, so the sum of the firing time and 

the absolute refractory time is T FR . V A is the after-potential at time 

t f + T F R , namely, 

V A = V r e 
−T Re + E(1 − e −T Re ) . 

We assume V A < 0, which implies V r < V A < 0. The action potential 

increases from V r to V R in the interval [ t f + T F , t f + T F R ] . Any exter- 

nal input or internal feedback has no effect on the action potentials 

during the firing time and the absolute refractory time. 

The excitatory feedback functions are represented respectively 

by the following, 

F E 1 (t) = 

{ 

b 1 if t ∈ [ t τ
f,E 1 

+ τ, t τ
f,E 1 

+ τ + T EF ] , 

0 otherwise , 

F E 2 (t) = 

{ 

b 2 if t ∈ [ t τ
f,E 2 

+ τ, t τ
f,E 2 

+ τ + T EF ] , 

0 otherwise , 

F E 3 (t) = 

{ 

b 3 if t ∈ [ t τ
f,E 3 

+ τ, t τ
f,E 3 

+ τ + T EF ] , 

0 otherwise , 

where T EF is the duration of the excitatory feedback (EFB) and t τ
f,E i 

is the last firing time of excitatory neuron E i prior to the time t −
τ, i = 1 , 2 , 3 , τ is the synaptic delay. 
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