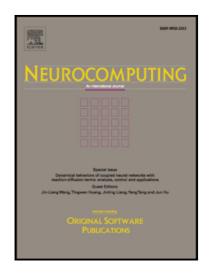
Accepted Manuscript

Mean-square consensus of heterogeneous multi-agent systems with nonconvex constraints, Markovian switching topologies and delays

Lipo Mo, Shaoyan Guo, Yongguang Yu


PII: S0925-2312(18)30242-X

DOI: 10.1016/j.neucom.2018.02.075

Reference: NEUCOM 19380

To appear in: Neurocomputing

Received date: 11 May 2017
Revised date: 3 December 2017
Accepted date: 18 February 2018

Please cite this article as: Lipo Mo, Shaoyan Guo, Yongguang Yu, Mean-square consensus of heterogeneous multi-agent systems with nonconvex constraints, Markovian switching topologies and delays, *Neurocomputing* (2018), doi: 10.1016/j.neucom.2018.02.075

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Mean-square consensus of heterogeneous multi-agent systems with nonconvex constraints, Markovian switching topologies and delays[☆]

Lipo Mo, Shaoyan Guo

School of Science, Beijing Technology and Business University, Beijing 100048,
P. R. China

Yongguang Yu

Department of Mathematics, Beijing Jiaotong University, Beijing 10044, P. R. China

Abstract

This paper addresses the velocity-constrained mean-square consensus problem of heterogeneous multi-agent systems with Markovian switching topologies and time-delay, which consist of first-order and second-order agents. A distributed control law with time-varying gains is proposed to make the position states of both first-order and second-order agents mean-square converge to a common point and the velocities of second-order agents mean-square converge to zero, while their velocities remain in the corresponding nonconvex constraint sets. Based on novel multiple model transformations, the consensus analysis is completed by studying the asymptotic dynamics of a time-varying matrix system. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithms.

Keywords: Multi-agent systems, time-varying gain, velocity-constraint, mean-square consensus.

Email address: beihangmlp@126.com (Lipo Mo)

This work is supported by National Natural Science Foundation (NNSF) of China (Grant No. 61304155, 11371049) and the Beijing Municipal Government Foundation for Talents(Grant No.2012D005003000005).

Download English Version:

https://daneshyari.com/en/article/6864199

Download Persian Version:

https://daneshyari.com/article/6864199

<u>Daneshyari.com</u>