

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 257 (2006) 26-30

www.elsevier.com/locate/molcata

Catalyst poisoning in catalyzed imine hydrogenation: A novel zwitterionic Rh(I)/o-hydroxy-substituted imine complex

Paolo Marcazzan, Brian O. Patrick, Brian R. James*

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1

Available online 15 May 2006

Dedicated to Professor Bogdan Marciniec on the occasion of his 65th birthday, and to acknowledge his contributions to organometallic chemistry and catalysis.

Abstract

During investigation of the homogeneous H₂-hydrogenation of the ketimine $(o-HOC_6H_4)C(Me) = NCH_2Ph$ catalyzed by the $[Rh(COD)(PPh_3)_2]PF_6$ precursor in MeOH at ambient conditions, we have isolated $[Rh\{\eta^4 - (C_6H_4O)^{(-)}C(Me) = N^{(+)}(H)CH_2Ph\}(PPh_3)_2]PF_6$ (3), an unusual zwitterionic Rh complex in which the imine is coordinated via the C₄ part of the *o*-hydroxy-arene moiety in a quinoid form; this tautomer is generated via proton transfer from the O-atom to the N-atom within the molecular, benzenoid form. Precipitation of **3** from the MeOH solution, even under H₂, causes sequestration of the Rh and complete suppression of the catalytic activity. (In a previously studied system with the corresponding, non-hydroxy-substituted ketimine, PhC(Me) = NCH₂Ph, the Rh was sequestered as an inactive *o*-metalated species). The solid state structure of **3** is retained in CH₂Cl₂ solution, but in MeOH and Me₂CO reversible loss of the ketimine generates the *cis*-[Rh(PPh₃)₂(solvent)₂]PF₆ species.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Catalysis; Hydrogenation; Imine complex; Rhodium complex; Phosphine ligand; Zwitterion

1. Introduction

Homogeneous hydrogenation of imines catalyzed by metal complexes is an area of intense current interest, particularly with regard to mechanistic aspects of the process and their implications for the design and use of improved catalysts for generation of chiral amines [1].

Our investigations on the H₂-hydrogenation of imines catalyzed by the [Rh(COD)(PPh₃)₂]PF₆ precursor have revealed that, depending on the electronic and steric properties of the substrates and their hydrogenation products (amines), the reactivity patterns and/or coordination modes of the imines and amines can be very different under identical conditions; we have established cyclometalation [2] and hydrolysis [3] of the imine, π -arene coordination of an amine formed by hydrogenation [4], and N-coordination of an amine formed via the hydrolysis [3]. The H₂-hydrogenation of PhC(Me) = NCH₂Ph in MeOH at room temperature and 1 atm H₂ catalyzed by

1381-1169/\$ – see front matter 0 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2006.04.012

 10^{-3} M [Rh(COD)(PPh₃)₂]PF₆ precursor (which in situ generates *cis,trans,cis*-[Rh(H)₂(PPh₃)₂(MeOH)₂]PF₆) is slow, with 40% conversion after 24 h at substrate: Rh = 100 [2]. This is because the Rh, while bonded in the usual η^1 -N fashion, is sequestered as a catalytically inactive *o*-metalated species [2], the orthometalation involving the *o*-hydrogen of the Ph substituent on the imine C-atom. It was thus of interest to eliminate this orthometalation reaction by incorporating *o*-substituents, and initially (*o*-HOC₆H₄)C(Me) = NCH₂Ph was chosen. This ketimine was found not to be hydrogenated at all under ambient conditions, because the Rh is now converted to a very different, and apparently unique, type of complex, namely [Rh{ η^4 -(C₆H₄O)⁽⁻⁾C(Me) = N⁽⁺⁾(H)CH₂Ph}(PPh₃)₂]PF₆; this paper reports on the full characterization of this compound.

2. Experimental

2.1. General

Synthetic procedures were performed at room temperature (~ 20 °C) using standard Schlenk techniques under an atmo-

^{*} Corresponding author. Tel.: +1 604 822 6645; fax: +1 604 822 2847. *E-mail address:* brj@chem.ubc.ca (B.R. James).

sphere of dry Ar. The solid imine $(o-HOC_6H_4)C(Me) = NCH_2Ph$ was synthesized in this laboratory previously by Dr. D.E. Fogg [5]. The [Rh(COD)(PPh₃)₂]PF₆ complex, and the readily derived cis, trans, cis-[Rh(H)2(PPh3)2(solv)2]PF6 (1) and cis- $[Rh(PPh_3)_2(solv)_2]PF_6$ (2) species (solv = MeOH, Me₂CO), were prepared according to literature procedures [6,7]. Other reagents were purchased from commercial sources and used as supplied. Solvents were dried over the appropriate agents and distilled under N₂ prior to use. NMR spectra were recorded on Bruker AV 300 (300 MHz for 1 H, 121 MHz for 31 P{ 1 H}, 75 MHz for 13 C) and Bruker AV 400 (400 MHz for 1 H, 162 MHz for ${}^{31}P{}^{1}H$, 100 MHz for ${}^{13}C$) spectrometers; residual solvent protons (¹H, relative to external SiMe₄), and 85% aq. H₃PO₄ $({}^{31}P{}^{1}H{})$, were used as references. All J values are given in Hz. The infrared spectrum was recorded on an ATLI Mattson Genesis Series FTIR spectrophotometer, and IR bands (KBr pellet) are reported in cm^{-1} . Elemental analysis was performed by Mr. M. Lakha of this department on a Carlo Erba 1108 analyzer.

2.2. Synthesis of $[Rh\{\eta^4 - (C_6H_4O)^{(-)}C(Me) = N^{(+)}(H)CH_2Ph\}(PPh_3)_2]PF_6(3)$

A red solution of *cis*-[Rh(PPh₃)₂(MeOH)₂]PF₆ (2,0.09 mmol) in MeOH (5 mL) was treated with (o - $HOC_6H_4)C(Me) = NCH_2Ph$ (0.041 g, 0.181 mmol) under Ar, and the mixture stirred at room temperature for 2h. The dark-red solid that slowly precipitated over this period was collected by filtration, washed with Et₂O ($3 \times 4 \text{ mL}$) and dried in vacuo. Yield: 0.045 g (50%). Anal. calcd. for C₅₁H₄₅F₆NOP₃Rh: C, 61.39; H, 4.55; N, 1.40. Found: C, 61.42; H, 4.79; N, 1.60. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.11 (s, 3 H, CH₃), 4.23 (d, 1 H, m'- η^4 (C₆H₄O), ³ J_{HH} = 7), 4.73 (d, 1 H, $o-\eta^4(C_6H_4O)$, ${}^{3}J_{HH}=6$), 4.85 (ABX multiplet, 2 H, CH₂, $J_{AB} = 17, J_{AX} = J_{BX} = 6$), 5.04 (t, 1 H, $m - \eta^4 (C_6 H_4 O)$, $^3J_{HH} = 5$), 7.10 (t, 1 H, $p-\eta^4$ (C₆H₄O), ${}^3J_{\rm HH} = 6$), 6.97–7.70 (m, 35 H, Ar), 14.96 (s, 1 H, N···H···O). ¹³C NMR (100 MHz, CD₂Cl₂): δ 14.82 (s, CH₃), 50.2 (s, CH₂), 84.5 (s, *m*-η⁴-C₆H₄O), 89.1 (s, $m'-\eta^4-C_6H_4O$, 100.8 (s, $o-\eta^4-C_6H_4O$), 105.1 (s, $p-\eta^4-C_6H_4O$), 106.1 (s, *ipso*- η^4 -C₆H₄O), 128.2–135.2 (m, C–Ar), 171.2 (s, C=O), 171.5 (s, C=N). ${}^{31}P{}^{1}H{}$ NMR (121 MHz, CD₂Cl₂): δ 39.5 (d, J_{RhP} = 203). IR (KBr pellet): ν = 1581 (C=N), 1966 (C=O), 3055, 3447 (N···H···O).

2.3. Crystal structure determination

Measurements were made at 173(1) K on a Rigaku/ADSC CCD area detector diffractometer with graphite monochromated Mo K α radiation (0.71073 Å). Some crystallographic data for **3** are shown in Table 1. Data for **3** were collected using the d*TREK [8] software package and processed using TwinSolve [9]. Data were corrected for absorption effects using a multi-scan technique (TwinSolve), with normalized minimum and maximum transmission coefficients of 0.778 and 0.962, respectively. The structure was solved by direct methods [10]. All non-hydrogen atoms were refined anisotropically. The N···H···O hydrogen atom was located in a difference map and refined isotropically, while all other H-atoms were

Table 1 Crystallographic data for $[Rh{\eta^{4}-(C_{6}H_{4}O)^{(-)}C(Me)=N^{(+)}(H)CH_{2}Ph}-(PPh_{3})_{2}]PF_{6}$ (3)

Data	3
Formula	$C_{51}H_{45}F_6NOP_3Rh$
Formula weight	997.70
Crystal system	Triclinic
Crystal size (mm)	$0.40 \times 0.20 \times 0.07$
Space group	P-1 (#2)
a (Å)	12.120(1)
<i>b</i> (Å)	13.004(1)
<i>c</i> (Å)	15.354(1)
β (°)	78.891(5)
Volume (Å ³)	1864.2(4)
Ζ	2
Absorption coefficient (mm ⁻¹)	0.549
Total reflections	18856
Unique reflections	8096
R _{int}	0.028
No. of variables	589
$R_1 (I > 2\sigma(I))$	0.030 (6778 obs. refl.)
wR_2^{a}	0.074 (all data)
gof	1.03 (all data)

^a $w = 1/[\sigma^2(F_0^2) + (0.0381P)^2 + 1.1685P]$, where $P = (F_0^2 + 2F_c^2)/3$.

included in calculated positions but not refined. The final cycle of full-matrix least-squares refinement on F^2 was based on 8096 reflections and 589 variable parameters (least squares function minimized $\Sigma w(F_o^2 - F_c^2)^2$, where $w = 1/[\sigma^2(F_o^2) + (0.0381 P)^2 + 1.1685 P]$ and $P = (F_o^2 + 2F_c^2)/3$), and converged to $R_1 = 0.043$, $wR_2 = 0.074$, GOF = 1.03. Neutral atom scattering factors were taken from Cromer and Waber [11] and anomalous dispersion effects were included in F_{calc} [12], the values of $\Delta f'$ and $\Delta f''$ being those of Creagh and McAuley [13]. Values for the mass attenuation coefficients are those of Creagh and Hubbell [14], and all calculations were performed using SHELXL-97 [15].

Complete crystallographic material for complex **3** has been deposited with the Cambridge Crystallographic Data Centre; copies of the data (CCDC: 296071) can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: +44 1223 336 033 or e-mail: deposit@ccdc.cam.ac.uk).

3. Results and discussion

Reaction of either *cis,trans,cis*-[Rh(H)₂(PPh₃)₂(MeOH)₂]-PF₆ (1) [6] or *cis*-[Rh(PPh₃)₂(MeOH)₂]PF₆ (2) [7] in MeOH at room temperature under Ar with two equivalents of the ketimine (*o*-HOC₆H₄)C(Me) = NCH₂Ph for 2 h results in the slow, spontaneous precipitation of the dark-red solid [Rh{η⁴-(C₆H₄O)⁽⁻⁾C(Me) = N⁽⁺⁾(H)CH₂Ph}(PPh₃)₂]PF₆ (3) that was isolated and fully characterized (Fig. 1). X-ray quality needle crystals of **3** were obtained by slow evaporation of a CH₂Cl₂ solution of the complex layered with hexanes. The structure of the cation is shown in Fig. 2 and selected bond lengths and angles are listed in Table 2. Download English Version:

https://daneshyari.com/en/article/68643

Download Persian Version:

https://daneshyari.com/article/68643

Daneshyari.com