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a b s t r a c t 

Regularized empirical risk minimization using kernels and their corresponding reproducing kernel Hilbert 

spaces (RKHSs) plays an important role in machine learning. However, the actually used kernel often de- 

pends on one or on a few hyperparameters or the kernel is even data dependent in a much more com- 

plicated manner. Examples are Gaussian RBF kernels, kernel learning, and hierarchical Gaussian kernels 

which were recently proposed for deep learning. Therefore, the actually used kernel is often computed 

by a grid search or in an iterative manner and can often only be considered as an approximation to the 

“ideal” or “optimal” kernel. 

The paper gives conditions under which classical kernel based methods based on a convex Lipschitz 

loss function and on a bounded and smooth kernel are stable, if the probability measure P, the regulariza- 

tion parameter λ, and the kernel K may slightly change in a simultaneous manner. Similar results are also 

given for pairwise learning. Therefore, the topic of this paper is somewhat more general than in classical 

robust statistics, where usually only the influence of small perturbations of the probability measure P on 

the estimated function is considered. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Regularized empirical risk minimization using the kernel ap- 

proach including support vector machines (SVMs) based on a gen- 

eral convex loss function and regularized pairwise learning (RPL) 

methods plays a very important role in machine learning. Such 

kernel methods have been widely investigated from the points of 

view of universal consistency, learning rates, and statistical robust- 

ness, see e.g. [12,13,28,31,34,35] , and the references cited in these 

books. In short words, universal consistency describes the prop- 

erty that the statistical method or the algorithm converges to the 

� The work by A. Christmann described in this paper is partially supported by 

two grants of the Deutsche Forschungsgesellschaft [Project No. CH/291/2-1 and 

CH/291/3-1]. The work by D. H. Xiang described in this paper is supported by 

the National Natural Science Foundation of China under Grant 11471292 and the 

Alexander von Humboldt Foundation of Germany. The work by D.-X. Zhou described 

in this paper is supported partially by the Research Grants Council of Hong Kong 

under project # CityU 11304114. 
∗ Corresponding author at: Department of Mathematics, Zhejiang Normal Univer- 

sity, Jinhua 321004, China. 

E-mail address: daohongxiang@zjnu.cn (D. Xiang). 

asymptotical optimal value of interest (i.e. the Bayes risk or the 

Bayes decision function) for all probability measures P, if the sam- 

ple size n converges to infinity and if the regularization parameter 

λn converges in an appropriate manner to 0. Unfortunately, it turns 

out by the so-called no-free-lunch theorem shown by Devroye 

[15] that universally consistent methods can in general not have a 

uniform rate of convergence for all P. However, there is a vast litera- 

ture that regularized empirical risk minimization based on kernels 

yields optimal guaranteed rates of convergence on large subsets 

of the set M 1 of all probability measures, see e.g. [5,12,30,32,39] , 

and the references cited therein. Results on the statistical robust- 

ness or on various notations of stability have shown that under 

weak conditions on the loss function L and on the kernel K or its 

RKHS H , many regularized empirical risk minimization methods in- 

cluding general SVMs and RPL methods are stable with respect to 

small changes in the probability measure P or w.r.t. small changes 

of the data set, see e.g. [4,7–9,11,20,21,25,26] and the references 

cited therein. Such kernel methods can often be represented by 

operators which are continuous or differentiable (in the sense of 

Gâteaux or Hadamard) with respect to all probability measures P. 
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The aim of the present paper is to take a step further: we 

establish some total stability results which show that many reg- 

ularized empirical risk minimization methods based on kernels 

are even stable, if the full triple (P, λ, K ) consisting of the – of 

course completely unknown – underlying probability measure P, 

the regularization parameter λ, and the kernel K (or its RKHS H ) 

changes slightly. Our main results are Theorem 2.7, Corollary 2.9 , 

and Theorem 2.10 for classical loss functions and Theorem 3.3, 

Corollary 3.4 , and Theorem 3.5 for pairwise learning. In particular, 

we establish results like 

‖ f P 1 ,λ1 ,K 1 − f P 2 ,λ2 ,K 2 ‖ ∞ 

= O 

(‖ P 1 − P 2 ‖ tv 
)

+ O 

(| λ1 − λ2 | 
)

+ O 

(‖ K 1 − K 2 ‖ ∞ 

)
, (1.1) 

where f P j ,λ j ,K j 
denotes the regularized empirical risk minimization 

method for the triple (P j , λj , K j ), j ∈ {1, 2}, and ‖ P 1 − P 2 ‖ tv denotes 

the norm of total variation between the two probability measures. 

We explicitly give the constants in (1.1) , although the constants 

may not be optimal. 

The rest of the paper has the following structure. 

Section 2 yields results for general SVM-type methods based 

on a classical loss function L ( x, y, f ( x )). Section 3 yields similar 

results for pairwise learning based on functions of the form 

L (x, ̃  x , y, ̃  y , f (x ) , f ( ̃  x )) . Section 4 gives some examples of practical 

importance. Gaussian RBF kernels and the recently introduced 

hierarchical Gaussian RBF kernels for deep learning, see [33] , are 

covered by our results. Section 5 contains a short discussion. All 

proofs are given in the appendix. As this is a theoretical paper, we 

omit numerical examples. 

2. Results for SVMs 

In this section we show that many kernel based methods like 

SVMs have nice total stability properties if simultaneously the 

distribution P, the regularization parameter λ and the kernel K 

slightly change. 

Assumption 2.1. Let X be a complete separable metric space and 

Y ⊂ R be closed. Let ( X, Y ) and ( X i , Y i ), i ∈ N , be independent 

and identically distributed pairs of random quantities with val- 

ues in X × Y . We denote the joint distribution of ( X i , Y i ) by P ∈ 

M 1 ( X × Y ) , where M 1 (X × Y) is the set of all Borel probability 

measures on the Borel σ -algebra B X×Y . 

Let K : X × X → R be a continuous, symmetric and posi- 

tive semidefinite function, i.e., for any finite set of distinct 

points { x 1 , . . . , x n } ⊂ X , the kernel matrix (K(x i , x j )) 
n 
i, j=1 

is positive 

semidefinite. Such a function is called a Mercel kernel . The repro- 

ducing kernel Hilbert space (RKHS) H associated with the kernel K is 

defined in [1] to be the completion of the linear span of the set of 

functions { K(·, x ) : x ∈ X } with the inner product 〈 · , · 〉 H given by 

〈 �(x ) , �(y ) 〉 H = K(x, y ) , where �( x ) := K ( · , x ) denotes the canon- 

ical feature map of K , x ∈ X . RKHSs are interesting, because they 

satisfy the reproducing property 

〈 �(x ) , f 〉 H = f (x ) , x ∈ X , f ∈ H. (2.1) 

Assumption 2.2. Let K, K 1 , K 2 : X × X → R be continuous 

and bounded kernels with reproducing kernel Hilbert space 

H, H 1 , H 2 , respectively. Define ‖ K ‖ ∞ 

:= sup x ∈X 
√ 

K (x, x ) ∈ 

(0 , ∞ ) , ‖ K j ‖ ∞ 

:= sup x ∈X 
√ 

K j (x, x ) ∈ (0 , ∞ ) for j ∈ {1, 2}, and de- 

note κ = max {‖ K 1 ‖ ∞ 

, ‖ K 2 ‖ ∞ 

} . Denote the corresponding canonical 

feature maps by �j ( x ), j ∈ {1, 2}. 

A function L : X × Y × R → [0 , ∞ ) is called a loss function if L is 

measurable with respect to all Borel probability measures. Because 

constant loss functions are not useful for applications, we will al- 

ways assume that L is not a constant function. 

A loss function L ( x, y, t ) is usually represented by a 

margin-based loss function 

˜ L (yt) for classification and rep- 

resented by a distance-based loss function 

˜ L (y − t) for re- 

gression if ˜ L : R → [0 , ∞ ) is a measurable function. For ex- 

ample, the hinge loss L hinge (x, y, t) = max { 0 , 1 − yt} and the 

logistic loss L c-logist (x, y, t) = ln (1 + exp (−yt)) for classifi- 

cation, the ε-insensitive loss L ε-insens (x, y, t) = max { 0 , | y −
t| − ε} for some ε > 0, the Huber’s loss L α-Huber (x, y, t) = {

0 . 5(y − t) 2 if | y − t| ≤ α
α| y − t| − 0 . 5 α2 if | y − t| > α

for some α > 0 and the logistic 

loss L r-logist (x, y, t) = − ln 

4 exp (y −t) 

(1+ exp (y −t)) 2 
for regression, the pinball 

loss L τ -pin (x, y, t) = 

{
(τ − 1)(y − t) if | y − t| < 0 

τ (y − t) if | y − t| ≥ 0 
for some τ > 0 

for quantile regression. We refer to [2,13,28,29,31,34,35,41] for 

details and more examples of kernels. 

Definition 2.3. The loss function L is called Lipschitz continuous, if 

there exists a constant | L | 1 < ∞ such that 

| L (x, y, t 1 ) − L (x, y, t 2 ) | ≤ | L | 1 | t 1 − t 2 | ∀ x ∈ X , y ∈ Y, t 1 , t 2 ∈ R . 

(2.2) 

Assumption 2.4. Let L be a convex with respect to the last argu- 

ment and Lipschitz continuous loss function with Lipschitz con- 

stant | L | 1 ∈ (0, ∞ ). 

Assumption 2.5. For all (x, y ) ∈ X × Y , let L ( x, y , · ) be differen- 

tiable and its derivative be Lipschitz continuous with Lipschitz con- 

stant | L ′ | 1 ∈ (0, ∞ ). 

The moment condition E P L (X, Y, 0) < ∞ excludes heavy-tailed 

distributions such as the Cauchy distribution and many other sta- 

ble distributions used in financial or actuarial problems. We avoid 

the moment condition by shifting the loss with by the term L ( x, 

y , 0). This trick is well-known in the literature on robust statistics, 

see, e.g., [9,10,23] . 

Denote the shifted loss function of L by 

L 	 (x, y, t) := L (x, y, t) − L (x, y, 0) , (x, y, t) ∈ X × Y × R . 

The shifted loss function L 	 still shares the properties of L specified 

in Assumptions 2.4 and 2.5 , see [10, Proposition 2] , in particular, if 

L is convex, differentiable, and Lipschitz continuous with Lipschitz 

constant | L | 1 with respect to the third argument, then L 	 inher- 

its convexity, differentiability and Lipschitz continuity from L with 

identical Lipschitz constant | L 	 | 1 = | L | 1 . Additionally, if the deriva- 

tive L ′ satisfies Lipschitz continuity with Lipschitz constant | L ′ | 1 , so 

does ( L 	 ) ′ with the identical Lipschitz constant | (L 	 ) ′ | 1 = | L ′ | 1 . 
The SVM associated with L 	 can be defined to solve a minimiza- 

tion problem as follows 

f P ,λ,K := arg min 

f∈ H 

(
E P L 

	 (X, Y, f (X )) + λ‖ f‖ 

2 
H 

)
, (2.3) 

where P ∈ M 1 ( X × Y ) , H is the RKHS of a kernel K , and λ> 0 is a 

regularization parameter to avoid overfitting. 

Although the shifted loss function L 	 changes the objective 

function of SVMs, the minimizers defined by L 	 and L respectively 

are the same for all P ∈ M 1 (X × Y) and in particular for all empir- 

ical distributions D based on a data set consisting of n data points 

( x i , y i ), 1 ≤ i ≤ n , if the minimizer of an SVM in terms of L instead 

of L 	 exists. 

Our first main result states that the kernel based estimator f P, λ,K 

defined by (2.3) only changes slightly if the regularization param- 

eter wiggles a little bit. Ye and Zhou [40 , Theorem 1] proved the 

assertion of the following result for margin-based loss functions 

for classification. Here we show it holds true for more general loss 

functions. 
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