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a b s t r a c t 

In this paper, a novel integral reinforcement learning approach is developed based on value iteration 

(VI) for designing the H ∞ 

controller of continuous-time (CT) nonlinear systems. First, the VI learning 

mechanism is introduced to solve the zero-sum game problems, which is equivalent to the Hamilton–

Jacobi–Isaacs (HJI) equation arising in H ∞ 

control problems. Since the proposed method is based on VI 

learning mechanism, it does not require the admissible control for the implementation, and thus satisfies 

a more general initial condition than the works based on policy iteration (PI). The iterative property of 

the value function is analysed with an arbitrary initial positive function, and the H ∞ 

controller can be de- 

rived as the iteration converges. For the implementation of the proposed method, three neural networks 

are introduced to approximate the iterative value function, the iterative control policy and the iterative 

disturbance policy, respectively. To verify the effectiveness of the VI based method, a linear case and a 

nonlinear case are presented, respectively. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In various industrial applications, disturbance exists in many 

situations and always influences the controlled systems negatively. 

To handle this control problem, H ∞ 

control has been widely inves- 

tigated and becomes an essential part of robust control. The goal 

of H ∞ 

control is to find a feedback controller for a given system 

while considering the robustness and control performance. In the 

early years, the H ∞ 

control problem was studied for the linear sys- 

tems [1,2] . Later, some researchers [3–8] well developed the H ∞ 

control theory arising in the nonlinear systems. The work of [6] in- 

dicated that the H ∞ 

control problem could be equivalent to a two- 

player zero-sum differential game. The Nash equilibrium solution 

of the game could be solved by a equation called Hamilton–Jacobi–

Isaacs (HJI), which is a nonlinear partial differential equation (PDE). 

For the linear case, the HJI equation reduces to a Riccati equation 

which can be efficiently solved. However, for the nonlinear case, 

there is still no approach to solve the HJI equation analytically. 

This has inspired researchers to study approaches for solving the 

∗ Corresponding author at: The Key Laboratory of Integrated Automation of Pro- 

cess Industry of the National Education Ministry, Northeastern University, 110 0 04 

Shenyang, PR China. 

E-mail addresses: xgyalan@outlook.com (G. Xiao), hgzhang@ieee.org , 

zhg516516@gmail.com (H. Zhang), nukgnahz@163.com (K. Zhang), 

wenyl.d.h@hotmail.com (Y. Wen). 

HJI equation approximately, and some direct approaches have been 

proposed in early period [4,9] . Unfortunately, the proposed direct 

approaches were restricted by computational load. In recent years, 

some researchers developed an indirect approach to approximate 

the solution of HJI equation by introducing reinforcement learning 

(RL) technique. 

Over the last several decades, RL has been widely studied [10–

13] , which attempts to imitate the natural law of learning in mam- 

mals. The concept of RL is learning how to map situations to ac- 

tions, so as to maximize a numerical reward signal [12] . Unlike 

most forms in machine learning, the learner is not told which ac- 

tions to take, but instead discover which actions can result in the 

most wanted reward by trying them. Actually, according to the RL 

technique, actions may affect not only the immediate reward but 

also the next situation and, through that, all subsequent rewards. 

Because of this important distinguishing feature, some researchers 

[14–16] introduced the idea of RL into solving the optimal problem 

arising in nonlinear control, and proposed an actor-critic structure 

to solve a nonlinear PDE called Hamilton–Jacobi–Bellman (HJB) 

equation approximately to derive the solution. This RL-based tech- 

nique is named as approximate dynamic programming, or adaptive 

dynamic programming (ADP). Since the HJI equation is also a non- 

linear PDE, much attention have been attracted to introduce this 

RL-based technique to seek for the solution of HJI [17–32] . Gener- 

ally, there are two typical way in the ADP framework to solve for 

the PDE, the policy iteration (PI) and the value iteration (VI) [14] . 
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For the H ∞ 

control problem arising in the continuous-time 

(CT) nonlinear systems, various works have been studied based 

on PI method. One feature of the PI is that it requires to solve 

a value function associated with an admissible control policy in 

the policy evaluation step [33,34] . In [17,20] , the authors proved 

that the HJI equation can be solved by using PI, and the iterative 

convergence to the available storage function associated with a 

given L 2 -gain was proposed. In [18,19] , the H ∞ 

control problem 

with finite-horizon was studied by using PI. In [21,26] , a devel- 

oped PI based method was proposed which can deal with the 

systems with unknown drift dynamics and be implemented in 

an on-line manner. In [22] , a PI based method was proposed to 

shown that the mixed optimum of the zero-sum game can be 

derived even the saddle point solution does not exist. In [23,24] , 

the authors attempted to design PI based algorithms to seek for 

the solution of the HJI equation by using only one neural network. 

In [25] , the authors developed a PI based integral reinforcement 

learning algorithm [34] for the H ∞ 

control of unknown CT linear 

systems. In [28] , a novel PI based technique called off-policy was 

introduced to solve the HJI equation and arbitrary policies can be 

applied to generate the system data to tune the algorithm rather 

than the evaluating policy. The authors of [29,31] developed the 

off-policy technique to design the H ∞ 

controller for unknown CT 

nonlinear systems. Although various well developed methods were 

proposed for the H ∞ 

controller design of CT nonlinear systems, all 

of them were based on PI, and thus the initial admissible control 

is assumed [33] . From a mathematical point of view, an admissible 

control can be regarded as a suboptimal control which requires to 

solve the nonlinear partial differential equations analytically. Thus, 

to ensure the admissibility may be a serious restrictive condition 

actually. To the best of our knowledge, there is still no approach 

to obtain such a control, especially for the nonlinear systems with 

the existence of disturbance. 

On the other hand, the learning mechanism of VI ensures more 

free in the initial condition than PI, where the admissible control 

assumption is not required [35–41] . In [35] , the convergence of VI 

method was proved with an initial zero value function for the op- 

timal control arising in the discrete-time (DT) nonlinear systems. 

In [39] , the authors discussed the convergence of VI in a more 

general way for the optimal control problem of DT nonlinear sys- 

tems, where the algorithm can be initialized with an arbitrary pos- 

itive value function. Since the benefits of initial condition, some 

researchers introduced VI to solve the H ∞ 

control problem aris- 

ing in DT systems [42,43] . In [42] , the authors introduced the VI 

learning mechanism into the Q-learning method for the H ∞ 

con- 

trol problem of DT linear systems. In [43] , the authors developed a 

VI based algorithm to seek for the solution of the zero-sum game 

for DT nonlinear systems, which is equal to the solution of the 

HJI equation associated with H ∞ 

control problems. However, the 

above works were proposed for the DT nonlinear systems. The dis- 

cussions on solving the H ∞ 

control problem by VI method for CT 

nonlinear systems are scarce, which motives our research. 

In this paper, a novel VI based integral reinforcement learn- 

ing method is proposed to design the H ∞ 

controller for CT non- 

linear systems. First, the algorithm is proposed by introducing the 

VI learning mechanism into the integral reinforcement learning to 

solve the HJI equation arising in H ∞ 

control problems for CT non- 

linear systems. Since the proposed method is based on VI learn- 

ing mechanism, it satisfies a more general initial condition than 

the works based on PI which requires an initial admissible control 

for implementation. The iterative property of the value function 

is analysed with an arbitrary initial positive function, and the H ∞ 

controller can be derived as the iteration converges. For the imple- 

mentation of the proposed method, three neural networks are in- 

troduced to approximate the iterative value function, the iterative 

control policy and the iterative disturbance policy, respectively. At 

last, two simulation cases are presented to illustrate the effective- 

ness of the proposed method. 

2. Problem statement 

Consider the CT nonlinear system described as 

˙ x = f (x ) + g(x ) u + p(x ) d 
y = z(x ) , 

(1) 

where x ∈ R 

n is the system state vector, u ∈ R 

m is the control input, 

d ∈ R 

p is the external disturbance and y ∈ R 

q is the output. The dy- 

namics of the system f (x ) ∈ R 

n , g(x ) ∈ R 

n ×m and p(x ) ∈ R 

n ×p are 

Lipschitz continuous on a set � ⊆ R 

n and satisfy f (0) = 0 . The out- 

put dynamic satisfies the zero-state observability. 

The control objective of H ∞ 

controller design is to seek for a 

control policy u ( x ) to ensure the asymptotically stability of sys- 

tem (1) , and satisfying the following L 2 -gain condition with a pre- 

scribed level γ∫ ∞ 

0 

(y T y + ‖ u ‖ 

2 
R )d τ ≤ γ 2 

∫ ∞ 

0 

‖ d‖ 

2 d τ, (2) 

where ‖ u ‖ 2 
R 

= u T Ru with R > 0. 

The performance index is defined as 

J(x 0 , u, d) = 

∫ ∞ 

0 

(y T y + ‖ u ‖ 

2 
R − γ 2 ‖ d‖ 

2 )d τ

= 

∫ ∞ 

0 

U(x, u, d)d τ ≤ 0 (3) 

for all d ∈ L 2 [0, ∞ ) and x (0) = 0 , where U(x, u, d) = y T (x ) y (x ) + 

‖ u ‖ 2 R − γ 2 ‖ d‖ 2 denotes the utility function. 

For fixed control and disturbance policies u ( x ) and d ( x ), define 

the value function as 

V (x (t) , u, d) = 

∫ ∞ 

t 

U(x, u, d)d τ. (4) 

Differentiating the above value function, we can derive 

U(x, u, d) + ∇V 

T (x )( f (x ) + g(x ) u + p(x ) d) = 0 , V (0) = 0 , (5) 

where ∇V = ∂ V/∂ x . 
Define the Hamiltonian function for the value function (4) with 

associated control policy u and disturbance policy d as 

H(x, u, d, ∇V ) � U(x, u, d) + ∇V 

T (x )( f (x ) + g(x ) u + p(x ) d) . (6) 

According to the game theory [6] , the control problem can be 

referred to a two-player zero-sum differential game: 

V 

∗(x 0 ) = min 

u 
max 

d 
J(x 0 , u, d) , (7) 

which exists the unique solution of the saddle point if the Nash 

condition holds 

V 

∗(x 0 ) = min 

u 
max 

d 
J(x 0 , u, d) = max 

d 
min 

u 
J(x 0 , u, d) . (8) 

Suppose the V 

∗( x ) is continuous differentiable, based on the 

Bellman principle, we have 

min 

u 
max 

d 
[ H(x, u, d, ∇V 

∗)] = 0 , (9) 

and then 

u 

∗ = −1 

2 

R 

−1 g T (x ) ∇V 

∗(x ) , (10) 

d ∗ = 

1 

2 γ 2 
p T (x ) ∇V 

∗(x ) . (11) 

Substituting the control policy (10) and disturbance policy 

(11) into (5) , we can derive the following HJI equation: 
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