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ABSTRACT

Total variation (TV) minimization for the sparse-view x-ray computer tomography (CT) reconstruction
has been widely explored to reduce radiation dose. However, owing to the piecewise constant assump-
tion, CT images reconstructed by TV minimization-based algorithms often suffer from image edge over-
smoothness. To address this issue, an improved sparse-view CT reconstruction algorithm is proposed in
this work by incorporating a Mumford-Shah total variation (MSTV) model into the penalized weighted
least-squares (PWLS) scheme, termed as “PWLS-MSTV”. The MSTV model is derived by coupling TV min-
imization and Mumford-Shah segmentation, to achieve good edge-preserving performance during image
denoising. To evaluate the performance of the present PWLS-MSTV algorithm, both qualitative and quan-
titative studies were conducted by using a digital XCAT phantom and a physical phantom. Experimental
results show that the present PWLS-MSTV algorithm has noticeable gains over the existing algorithms in
terms of noise reduction, contrast-to-ratio measure and edge-preservation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

X-ray computed tomography (CT) has been widely used in
clinical applications over the past decades. However, excessive x-
ray radiation exposure during clinical examination has been con-
cerned about increasing lifetime risk of cancerous, genetic, and
other diseases [1-4]. Therefore, minimizing the radiation risks is
strongly desirable in clinical practices. To reduce the radiation
dose, two major strategies have been widely discussed, including
reducing the milliampere-seconds per projection view or decreas-
ing the required number of projection views (sparse-view) per ro-
tation around the body [5-7]. In this work, we are focusing on
low-dose CT image reconstruction from the spare-view projection
data. In the sparse-view CT scans, less projection views will un-
avoidably lead the acquired sinograms insufficient and increase
the data inconsistence associated with the sparsity. And this data
inconsistence would cause image artifacts. Therefore, the diagnos-
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tic quality of the CT images would be degraded if appropriate
methods are not applied during image reconstruction.

To address the issues of sparse-view CT image reconstruc-
tion, various image reconstruction methods by incorporating ad-
equate prior information of the desired image have been proposed
[8-14]. A typical example is total variation (TV) based projec-
tion onto convex sets (POCS) reconstruction strategy, based on the
piecewise constant assumption of the desired image, has shown its
effectiveness for dealing with the data insufficiency from sparse-
view sampling [8-10]. Furthermore, to address the limitations of
the original TV constrain with isotropic edge property, different
weighted-TVs were proposed recently [11-16].

In this work, aiming to improve the performance of TV min-
imization based algorithm, we introduce a Mumford-Shah TV
(MSTV) minimization for sparse-view CT image reconstruction un-
der the penalized weighted least-squares (PWLS) criteria, which
is termed as “PWLS-MSTV”. The MSTV regularization presents an
integrated framework for TV minimization and image segmen-
tation, which reduces the noise and artifacts in the segments
without over-smoothing the edges. In the implementation, the
PWLS-MSTV is performed by integrating CT image reconstruction
and segmentation, aiming to yield a continuous edge map and
less noise-induced artifacts. To evaluate the present PWLS-MSTV
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algorithm, qualitative and quantitative studies were performed on
both digital and physical phantoms in terms of noise reduction,
image-similarity metric, and convergence analysis.

The remaining part of this paper is organized as follows.
Section 2 first describes the MSTV model in brief, and then de-
scribes the proposed PWLS-MSTV image reconstruction algorithm
in detail and the associative optimization algorithm. In Section 3,
experimental setting for both digital and physical phantoms is de-
scribed. Section 4 is the results and discussion. Finally, the conclu-
sion is given in Section 5.

2. Methods
2.1. Mumford-Shah total variation

The MSTV was first proposed by Shah and used in the
image segmentation and image restoration [17-22]. The widely
used MSTV is an approximation proposed by Alicandro [22]:
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where 2 is a bounded domain, Vu is the gradient of image u, v
is the edge function of image u, which is approximate to zero in
the edge of image u while it is approximate to one in other re-
gion of image u, ¢ is a small positive constant and « is a pos-
itive weight which needs to be tuned manually. Alicandro et al.
[22] also proved the I'-convergence of this functional to

MSTV(u):/Q |Vu|dx+a/1+lu%dHl+|Dcu|(Q)
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where ut and u~ denote the image values on two sides of the edge
set K, H! is the one-dimensional Hausdorff measure and Du is the
Cantor part of the measure-valued derivative Du. Through the def-
inition of MSTV as shown in (2), it is obvious that MSTV not only
considered the TV norm of image u in the image domain except
for the edge, but also considered the measure of edge set K. There-
fore, MSTV regularization brings more powerful regularity of solu-
tion than TV regularization.

2.2. PWLS-MSTV for CT image reconstruction

In this study, we propose the following cost function for CT
image reconstruction with MSTV regularization:
;13(1)1} (v — Hu)TG ' (y — Hu) + BaMSTV, (u, v) (3)
where G:l}—]HHT + %, B and B, are two hyper-parameters to bal-
ance these two terms, namely, the fidelity term and the regulariza-
tion term. u is the vector of attenuation coefficients to be recon-
structed, symbol T denotes the matrix transpose. The operator H
represents the system or projection matrix with the size of M x N.
The element of hy is the length of the intersection of projection
ray i with pixel j. ¥ is a diagonal matrix with the ith element of
O‘iz which is the variance of sinogram data y;. In this work, the
variance ol.z is determined by the following mean-variance rela-
tionship based on our previous works [23-25].

Additionally, by introducing a new vector f, we have
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Hence, solving formula (4) is equal to solve the below formula:
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Namely,
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For simplifying the redundant parameter, we replace B,« by [
without losing the previous meaning. The above formula is equal
to:
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2.3. Optimization scheme

In order to solve the cost function in (7), a modified alternating
optimization method with three minimizing steps, which can be
formulated as follows:
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In the implementation, we utilized a separable paraboloidal sur-
rogates (SPS) algorithm [26] to solve (P1), let

-1
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Since the surrogate is a separable paraboloid, it can be easily
minimized by zeroing the first derivative. This leads to the follow-
ing simultaneous update algorithm:
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where the superscript k=1,2,...,K denotes the iteration index.

The first and second derivatives of the surrogate are easily shown
to be

(10)
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Then focusing on (P2), the solution of (P2) can be obtained by
calculate the derivate of the cost functional in (P2), which can be
written as follow:

21 (u— f) = 2B,Div(r*Vu) =0 (13)

where Div is the symbol of divergence and assuming L(v) denote
the differential operator

L(v) = —BDiv(r*Vu). (14)
Then the above Eq. (14) equals to

pr(u—f)+pol(v) =0 (15)
Let A(v)u = Biu + B,L(v), by rearranging (15), we can obtain

AWu = pif. (16)

As the literature [21], it is shown that the operator A(v) is
self-adjoint and positive definite. Therefore, the conjugate gradient
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