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a b s t r a c t 

Total variation (TV) minimization for the sparse-view x-ray computer tomography (CT) reconstruction 

has been widely explored to reduce radiation dose. However, owing to the piecewise constant assump- 

tion, CT images reconstructed by TV minimization-based algorithms often suffer from image edge over- 

smoothness. To address this issue, an improved sparse-view CT reconstruction algorithm is proposed in 

this work by incorporating a Mumford–Shah total variation (MSTV) model into the penalized weighted 

least-squares (PWLS) scheme, termed as “PWLS-MSTV”. The MSTV model is derived by coupling TV min- 

imization and Mumford–Shah segmentation, to achieve good edge-preserving performance during image 

denoising. To evaluate the performance of the present PWLS-MSTV algorithm, both qualitative and quan- 

titative studies were conducted by using a digital XCAT phantom and a physical phantom. Experimental 

results show that the present PWLS-MSTV algorithm has noticeable gains over the existing algorithms in 

terms of noise reduction, contrast-to-ratio measure and edge-preservation. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

X-ray computed tomography (CT) has been widely used in 

clinical applications over the past decades. However, excessive x- 

ray radiation exposure during clinical examination has been con- 

cerned about increasing lifetime risk of cancerous, genetic, and 

other diseases [1–4] . Therefore, minimizing the radiation risks is 

strongly desirable in clinical practices. To reduce the radiation 

dose, two major strategies have been widely discussed, including 

reducing the milliampere-seconds per projection view or decreas- 

ing the required number of projection views (sparse-view) per ro- 

tation around the body [5–7] . In this work, we are focusing on 

low-dose CT image reconstruction from the spare-view projection 

data. In the sparse-view CT scans, less projection views will un- 

avoidably lead the acquired sinograms insufficient and increase 

the data inconsistence associated with the sparsity. And this data 

inconsistence would cause image artifacts. Therefore, the diagnos- 
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tic quality of the CT images would be degraded if appropriate 

methods are not applied during image reconstruction. 

To address the issues of sparse-view CT image reconstruc- 

tion, various image reconstruction methods by incorporating ad- 

equate prior information of the desired image have been proposed 

[8–14] . A typical example is total variation (TV) based projec- 

tion onto convex sets (POCS) reconstruction strategy, based on the 

piecewise constant assumption of the desired image, has shown its 

effectiveness for dealing with the data insufficiency from sparse- 

view sampling [8–10] . Furthermore, to address the limitations of 

the original TV constrain with isotropic edge property, different 

weighted-TVs were proposed recently [11–16] . 

In this work, aiming to improve the performance of TV min- 

imization based algorithm, we introduce a Mumford–Shah TV 

(MSTV) minimization for sparse-view CT image reconstruction un- 

der the penalized weighted least-squares (PWLS) criteria, which 

is termed as “PWLS-MSTV”. The MSTV regularization presents an 

integrated framework for TV minimization and image segmen- 

tation, which reduces the noise and artifacts in the segments 

without over-smoothing the edges. In the implementation, the 

PWLS-MSTV is performed by integrating CT image reconstruction 

and segmentation, aiming to yield a continuous edge map and 

less noise-induced artifacts. To evaluate the present PWLS-MSTV 
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algorithm, qualitative and quantitative studies were performed on 

both digital and physical phantoms in terms of noise reduction, 

image-similarity metric, and convergence analysis. 

The remaining part of this paper is organized as follows. 

Section 2 first describes the MSTV model in brief, and then de- 

scribes the proposed PWLS-MSTV image reconstruction algorithm 

in detail and the associative optimization algorithm. In Section 3 , 

experimental setting for both digital and physical phantoms is de- 

scribed. Section 4 is the results and discussion. Finally, the conclu- 

sion is given in Section 5 . 

2. Methods 

2.1. Mumford–Shah total variation 

The MSTV was first proposed by Shah and used in the 

image segmentation and image restoration [17–22] . The widely 

used MSTV is an approximation proposed by Alicandro [22] : 

MST V ε (u, v ) = 

∫ 
�

v 2 | ∇u | dx + α

∫ 
�

(
ε | v | 2 + 

( v − 1 ) 
2 

4 ε 

)
dx (1) 

where � is a bounded domain, ∇u is the gradient of image u, v 

is the edge function of image u , which is approximate to zero in 

the edge of image u while it is approximate to one in other re- 

gion of image u , ɛ is a small positive constant and α is a pos- 

itive weight which needs to be tuned manually. Alicandro et al. 

[22] also proved the �-convergence of this functional to 

MST V (u ) = 

∫ 
�\ K 

| ∇u | dx + α

∫ 
K 

| u 

+ − u 

−| 
1 + | u 

+ − u 

−| d H 

1 + | D 

c u | ( �) 

(2) 

where u + and u − denote the image values on two sides of the edge 

set K, H 

1 is the one-dimensional Hausdorff measure and D 

c u is the 

Cantor part of the measure-valued derivative Du . Through the def- 

inition of MSTV as shown in ( 2 ), it is obvious that MSTV not only 

considered the TV norm of image u in the image domain except 

for the edge, but also considered the measure of edge set K . There- 

fore, MSTV regularization brings more powerful regularity of solu- 

tion than TV regularization. 

2.2. PWLS-MSTV for CT image reconstruction 

In this study, we propose the following cost function for CT 

image reconstruction with MSTV regularization: 

min 

u ≥0 , v 
(y − Hu ) T G 

−1 (y − Hu ) + β2 MST V ε (u, v ) (3) 

where G = 

1 
β1 

H H 

T + �, β1 and β2 are two hyper-parameters to bal- 

ance these two terms, namely, the fidelity term and the regulariza- 

tion term. u is the vector of attenuation coefficients to be recon- 

structed, symbol T denotes the matrix transpose. The operator H 

represents the system or projection matrix with the size of M × N . 

The element of h ij is the length of the intersection of projection 

ray i with pixel j . � is a diagonal matrix with the i th element of 

σ 2 
i 

which is the variance of sinogram data y i . In this work, the 

variance σ 2 
i 

is determined by the following mean–variance rela- 

tionship based on our previous works [23–25] . 

Additionally, by introducing a new vector f , we have 

min 

f 
(y − H f ) T �−1 (y − H f ) + β1 ‖ 

f − u ‖ 

2 

= (y − Hu ) T G 

−1 (y − Hu ) (4) 

Hence, solving formula ( 4 ) is equal to solve the below formula: 

min 

u ≥0 , f, v 
(y − H f ) T �−1 (y − H f ) + β1 ‖ 

f − u ‖ 

2 + β2 MST V ε (u, v ) (5) 

Namely, 

min 

u ≥0 , f, v 
(y − H f ) T �−1 (y − H f ) + β1 ‖ 

f − u ‖ 

2 

+ β2 

∫ 
�

v 2 | ∇u | dx + β2 α

∫ 
�

( v − 1 ) 
2 

4 ε 
+ ε | ∇v | 2 dx (6) 

For simplifying the redundant parameter, we replace β2 α by l 1 
without losing the previous meaning. The above formula is equal 

to: 

min 

u ≥0 , f, v 
(y − H f ) T �−1 (y − H f ) + β1 ‖ 

f − u ‖ 

2 

+ β2 

∫ 
�

v 2 | ∇u | dx + α

∫ 
�

( v − 1 ) 
2 

4 ε 
+ ε | ∇v | 2 dx. (7) 

2.3. Optimization scheme 

In order to solve the cost function in ( 7 ), a modified alternating 

optimization method with three minimizing steps, which can be 

formulated as follows: 

(P1) : f = arg min 

f 

(y − H f ) T �−1 (y − H f ) + β1 ‖ 

f − u ‖ 

2 

(P2) : u = arg min 

u ≥0 

β1 ‖ 

f − u ‖ 

2 + β2 

∫ 
� v 2 | ∇u | dx 

(P3) : v = arg min 

v 
β2 

∫ 
� v 2 | ∇u | dx + α

∫ 
�

(v −1) 
2 

4 ε + ε | ∇v | 2 dx 

(8) 

In the implementation, we utilized a separable paraboloidal sur- 

rogates (SPS) algorithm [26] to solve (P1), let 

	( u ; f ) 


( y − H f ) 

T 
−1 ∑ 

( y − H f ) + β1 ‖ 

f − u ‖ 

2 
(9) 

Since the surrogate is a separable paraboloid, it can be easily 

minimized by zeroing the first derivative. This leads to the follow- 

ing simultaneous update algorithm: 

f k +1 
j 

= f k j −
∑ M 
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i 
) h i j ( [ H f k ] i − y i )) ∑ M 
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(10) 

where the superscript k = 1 , 2 , . . . , K denotes the iteration index. 

The first and second derivatives of the surrogate are easily shown 

to be 

∂	( u ; f ) 

∂ u j 
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Then focusing on (P2), the solution of (P2) can be obtained by 

calculate the derivate of the cost functional in (P2), which can be 

written as follow: 

2 β1 ( u − f ) − 2 β2 Di v 
(
v 2 ∇u 

)
= 0 (13) 

where Div is the symbol of divergence and assuming L ( v ) denote 

the differential operator 

L (v ) = −β2 Di v ( v 2 ∇u ) . (14) 

Then the above Eq. (14) equals to 

β1 (u − f ) + β2 L (v ) = 0 (15) 

Let A (v ) u = β1 u + β2 L (v ) , by rearranging (15) , we can obtain 

A (v ) u = β1 f . (16) 

As the literature [21] , it is shown that the operator A ( v ) is 

self-adjoint and positive definite. Therefore, the conjugate gradient 
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