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a b s t r a c t 

This paper is concerned with the exponential synchronization of stochastic coupled systems on networks. 

Time-varying coupling structure of coupled systems and discrete-time state feedback control are focuses 

and difficulties of our research. Based on the Lyapunov method and Kirchhoff’s Matrix Tree Theorem, two 

sufficient criteria are obtained, which guarantee the exponential synchronization of stochastic coupled 

systems with time-varying coupling structure on networks via discrete-time state feedback control. Fi- 

nally, we apply theoretical results to stochastic coupled oscillators and propose two numerical examples 

to illustrate the effectiveness and feasibility of the obtained theoretical results. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The word “synchronization” comes from Greek, which means 

“share time”. Today, from the point of view of science and tech- 

nology, it comes to be regarded as a common phenomenon or an 

adjustment of rhythms of oscillating objects due to their internal 

weak couplings. It is worth mentioning that the synchronization 

phenomenon (the synchronous motion of a pendulum hanging on 

the common base) was first discovered by the Dutch scholar Huy- 

gens in the 17th century. And the general definition of synchro- 

nization was presented by Blekhman et al. in 1997, see [1] . Nowa- 

days, synchronization has become a hot topic and received a great 

deal of attention among scientists from various fields, which has 

been reported in [2–8] . 

Over the past decades, coupled systems have become very hot, 

see [9,10] . And the synchronization plays an important role in re- 

searching coupled systems as one of their most important dynamic 

properties, see [11–14] . We notice that coupled systems and their 

coupling structure were considered in a determinate case in most 

existing literature. However, coupled systems will inevitably re- 

ceive the effects of random disturbances from the external envi- 

ronment, see [15–20] . And the coupling structure of coupled sys- 

tems may be not constant. Some phenomena can be described 
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legitimately if we take the time-varying coupling structure and 

stochastic disturbances into account. For instance, in biomathemat- 

ics, the dispersal rate of some species living in different groups 

varies with time, especially when some natural disasters happen. 

In epidemiology, the rate of transmission of infectious diseases also 

changes over time due to the population mobility. Thus, how to 

guarantee the synchronization of stochastic coupled systems with 

time-varying coupling structure on networks (SCSTN) is an inter- 

esting problem. 

In order to synchronize systems, external force controllers 

usually need to be designed on them. After researchers’ long-term 

exploration, many control strategies have been put forward. For 

instance, sliding mode control [21–24] , H ∞ 

control [25–28] , robust 

control [29–31] and so on. In [32] , Mao studied the mean-square 

exponential stabilization of the hybrid stochastic differential 

equations by presenting a new feedback control strategy based 

on discrete-time state observations. In fact, discrete-time state 

observations have been applied in various fields because they 

are convenient and economical. For example, in order to research 

nonparametric inference problems in the multiplicative inten- 

sity model, Negri and Nishiyama proposed a Nelson-Aalen type 

estimator based on discrete-time observations in [33] . And the 

results were the same as that of continuous-time observations. 

Besides, in sampled data control systems, the choice of proper 

sampling interval is even more important than the design of con- 

trollers, see [34,35] . In [36] , Barrau and Bonnabel dealt with the 
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problem of intrinsic filtering on SO(3) with discrete-time obser- 

vations. The choice of discrete-time measurements helped them 

circumvent some technical challenges. In addition, discrete-time 

observations also have been implemented in geology, engineering 

and so on. For instance, the analysis and prediction of urban 

ground settlement are usually based on observed multi-epoch 

discrete data. Weather stations usually collect discrete-time data 

to predict future weather, see [37] . It narrows the difficulty of the 

work and obtains consistent results with continuous-time state 

observations. So when we study the dynamic properties of systems 

via feedback control, discrete-time state observations are usually 

used because they receive the control gain information only at 

discrete times, and the control cost can be dramatically reduced. 

In addition to the external controller, Lyapunov method is 

also a powerful tool for studying synchronization. In [38] , Zhang 

et al. studied the robust synchronization by using Lyapunov func- 

tions and analysis techniques. Through designing an appropriate 

fuzzy adaptive controller and combining the Lyapunov approach, 

Bouzeriba et al. discussed the projective synchronization in [39] . 

However, it is necessary to point out that constructing Lyapunov 

functions directly is not easy. In [40,41] , Li et al. presented a graph- 

theoretic method to construct a global Lyapunov function for a sys- 

tem easily, which conquered the difficulty before. 

Motivated by the above discussions, firstly, we take stochastic 

disturbances and time-varying coupling structure into coupled sys- 

tems to serve the practical application better. Secondly, inspired 

by Mao et al., we apply a new type of feedback control based 

on discrete-time state observations on the response system to 

achieve synchronization. By means of the graph-theoretic method 

presented in [40,41] , we construct a suitable Lyapunov function 

successfully. Next, two sufficient criteria are proposed to guaran- 

tee the exponential synchronization of SCSTN. Finally, we discuss 

stochastic coupled oscillators and provide two numerical examples 

to demonstrate the practicability of theoretical results. 

Compared with the previous results, this paper has following 

contributions: 

• The model we study is novel, which considers both time- 

varying coupling structure and discrete-time state feedback 

control. 

• By combining the Lyapunov method with Kirchhoff’s Matrix 

Tree Theorem, two sufficient criteria are given, whose condi- 

tions reflect the influence of topological structure on the dy- 

namic properties. 

• The theoretical results are applied to stochastic coupled oscilla- 

tors, which indicates the practicability of obtained results and 

the significant role of discrete-time state feedback control. 

The remainder of this paper is organized as follows. We devote 

Section 2 to designing models and presenting some assumptions 

and definitions. Then two kinds of sufficient criteria are obtained 

in Section 3 . In Section 4 , theoretical results are applied to stochas- 

tic coupled oscillators. And two numerical examples are proposed 

in Section 5 . Finally, the conclusion is given in Section 6 and the 

proof of theorems is presented in Appendix . 

Notations . Define (�, F , F , P ) as a complete probability space 

with a filtration F = {F t } t≥0 satisfying the usual conditions, and 

let B ( t ) be a one-dimensional Brownian motion defined on 

the space. The mathematical expectation with respect to the 

given probability measure P is denoted by E (·) . The superscript 

“T” expresses the transpose of a vector or a matrix. Define 

I = { 1 , 2 , · · · , i } , Z 

+ = { 1 , 2 , · · · } , R 

1 + = [0 , + ∞ ) and m = 

∑ i 
l=1 m l for 

m l ∈ Z 

+ . And C 2 , 1 (R 

n × R 

1 + ; R 

1 + ) represents the family of all non- 

negative functions V ( x, t ) on R 

n × R 

1 + which are continuously twice 

differentiable in x and once in t . 

2. Model formulation 

In this section, some systems, assumptions and definitions 

about the mean-square exponential synchronization and node Lya- 

punov functions are presented as follows: 

Firstly, let (G, A (t)) denote a digraph G with weight matrix A ( t ), 

where A (t) = (a kh (t)) i ×i , and more concepts about graph theory 

can be seen in [40] . Next, we consider a stochastic coupled system 

on the digraph G with i ( i ≥ 2) vertices: 

d x k (t) = 

( 

f k ( x k (t ) , t ) + 

i ∑ 

h =1 

a kh (t) H kh ( x k (t ) , x h (t ) ) 

) 

d t 

+ g k ( x k (t ) , t ) d B (t) , k ∈ I , (1) 

where f k , g k : R 

m k × R 

1 + → R 

m k are continuous functions for any 

x k ∈ R 

m k , H kh : R 

m k × R 

m h → R 

m k represents coupling form and 

a kh ( t ) is differentiable and corresponds to coupling strength. 

We treat system (1) as a drive system. A discrete-time state 

feedback control is added to system (1) , then response system is 

obtained as follows: 

d y k (t) = 

(
f k (y k (t ) , t ) + u k (y k (δt ) − x k (δt ) , t) 

+ 

i ∑ 

h =1 

a kh (t) H kh (y k (t ) , y h (t )) 

)
d t 

+ g k (y k (t ) , t )d B (t ) , k ∈ I , (2) 

where u k : R 

m k × R 

1 + → R 

m k is a continuous function and δt = 

[ t/τk ] τk , τk > 0 is the duration between two consecutive observa- 

tions. 

To make readers better understand the drive-response systems, 

a simple example is given in Fig. 1 . Among which the left is a drive 

system and the right is a response system. We define the k -th error 

state vector e k = y k − x k between systems (1) and (2) , then we get 

the following error system: 

d e k (t) = 

( 

˜ f k (t) + u k (y k (δt ) − x k (δt ) , t) + 

i ∑ 

h =1 

a kh (t ) ̃  H kh (t ) 

) 

d t 

+ 

˜ g k (t)d B (t) , k ∈ I , (3) 

where ˜ H kh (t) = H kh (y k (t ) , y h (t )) − H kh (x k (t ) , x h (t )) , ˜ f k (t ) = 

f k (y k (t ) , t ) − f k (x k (t ) , t ) and ˜ g k (t) = g k (y k (t ) , t ) − g k (x k (t ) , t ) . 

Next, throughout this paper, some assumptions are presented 

as follows: 

(1) For any k ∈ I , u k ( · , t ) satisfies the global Lipschitz condition and 

f k ( · , t ), g k ( · , t ) satisfy the local Lipschitz condition. The Lipschitz 

constants are υk , χk , βk , respectively. 

(2) There exists a positive constant μkh , such that 

| H kh (y k , y h ) − H kh (x k , x h ) | ≤ μkh ( | e k | + | e h | ) , 
for any x k , y k ∈ R 

m k . 

(3) Digraph (G, A (t)) is strongly connected where A (t) = 

(a kh (t)) i ×i . In addition, it satisfies that a ′ 
kh 

(t) ≤ 0 , a kh ( t ) ≤ M 

and M > 0. 

(4) Let u k ( · , t ), f k ( · , t ), g k ( · , t ) and H kh ( · , · ) satisfy the linear growth 

condition. 

Furthermore, according to assumptions (1) , (2) , (4) and 

Theorem 3.1 of Chapter 2 in [42] , it is obvious that system (3) has a 

unique solution e (t) = 

(
e T 

1 
(t) , e T 

2 
(t ) , . . . , e T 

i 
(t ) 

)T 
for any initial con- 

ditions. Moreover, suppose that u k (0 , t) = 0 , then system (3) has a 

trivial solution e ( t ) ≡ 0. 

Before giving theorems, we present some definitions as follows. 
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