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a b s t r a c t 

To improve the imaging quality of low-dose computed tomography (CT) images, a deep learning based 

method for low-dose CT restoration is presented in this paper. Stacked sparse denoising autoencoders, 

which were designed originally for training noisy samples, are adopted to construct the architecture. 

Experimental results demonstrate that the proposed model outperforms several state-of-the-art methods, 

including total variation based projection on convex sets (TV-POCS), dictionary learning, block-matching 

3D (BM3D), convolutional denoising autoencoders (CDA) and U-Net based residual convolutional neural 

network (KAIST-Net), both qualitatively and quantitatively. The proposed method is not only capable of 

suppressing noise but also recovering structural details. Furthermore, once the network is trained offline, 

the processing speed for target low-dose images is much faster than other methods. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Because of the wide use of computed tomography (CT) in both 

clinical and industrial fields, the overall radiation dose of both pa- 

tients and operators has drawn much public attention [1] . As a re- 

sult, the famous ALARA (as low as reasonably achievable) principle 

is encouraged to refrain from causing excessive radiation doses in 

the medical community. Lowering the milliampere–seconds (mA s) 

parameter is a common way to reduce the radiation dose. How- 

ever, this method will unavoidably increase the quantum noise in 

the projection data and the imaging quality of reconstructed CT 

images will be severely degraded. How to improve the quality of 

low-dose CT images has hence been a major topic in the CT field. 

There are two approaches to lowering the radiation dose. The 

first one is to decrease the number of measurements. The second 

one is to reduce the amount of X-ray flux towards each detector el- 

ement. Directly decreasing the number of measurements will pro- 

duce insufficient projection data that suffers from too few views, 

limited angles, interior scans, or other problems. Reducing the X- 

ray flux can be implemented by modifying the operating current, 

potential, and exposure time of the X-ray tube, which will gen- 

erate noisy projections. In practice, the second method is easier 

to implement clinically, so in this work, we focus on this kind of 

method. 

Many methods have been proposed to improve the quality of 

low-dose CT images from noisy projections. These approaches can 
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be categorized into three groups: Sinogram filtering, iterative re- 

construction, and post-reconstruction restoration. Sinogram filter- 

ing directly smooths the raw data before filtered backprojection 

(FBP) is applied. Several typical methods including multiscale pe- 

nalized weighted least-squares [2] , maximum a posteriori [3] , bi- 

lateral filtering [4] , and structure adaptive sinogram filtering with 

ray contribution masks [5] . Iterative reconstruction optimizes a 

prior-regularized objective function iteratively. The key part of this 

kind of method is how to construct the image priors. Sparse rep- 

resentation is a powerful tool for completing this task with dif- 

ferent sparse transforms [6] . The most common transform is the 

discrete gradient transform, which is also called total variation 

(T V) [7] . However, T V assumes that the signal is piecewise con- 

stant, and this defective assumption causes an undesired side ef- 

fect called blocky effect. Many variants of TV were proposed in 

recent decades to overcome this problem [8–10] . In addition to 

TV-based methods, many other image priors have been presented, 

such as nonlocal means [11,12] , dictionary learning (DL) [13,14] , 

low rank [15,16] , and adaptive Markov random fields [17] . Itera- 

tive reconstruction methods are not desirable because of their in- 

tensive computational burden. Despite the successes achieved by 

these two kinds of approaches for improving imaging quality, they 

are often limited in practice because of the difficulty of gaining 

well-formatted projection data from commercial CT scanners. The 

post-reconstruction restoration approaches, which do not rely on 

projection data, can be directly applied to low-dose CT images and 

easily integrated into current CT systems as post-processing soft- 

ware. This is a reasonable alternative for those institutes that can- 

not handle the expense of upgrading their current scanners to the 

latest model. Our target was to develop a restoration strategy that 
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can be easily utilized in the CT community without considering 

machine-specific parameters. These requirements leads us to adopt 

post-reconstruction restoration techniques that are relatively sim- 

ple to implement. Actually, the statistical property of low-dose CT 

images cannot be precisely determined in the image domain, so 

many methods proposed in image processing field are not suitable 

for low-dose CT images. Given this situation, many efforts have 

been made to handle this kind of special noise pattern. Chen et al. 

introduced dictionary learning to improve abdomen tumor low- 

dose CT images [18] . Nonlocal means is also a popular technique 

for suppressing the noise in low-dose CT images [19] . As the most 

efficient natural image denoising method, the block-matching 3D 

(BM3D) algorithm has also been applied [20,21] . 

In contrast, learning-based methods are immune to imaging 

models, because this kind of method is, to a large degree, op- 

timized for training samples instead of the noise type. Recently, 

deep learning has attracted enormous attention in the field of 

computer vision tasks such as restoration, classification, and seg- 

mentation [22,23] . Deep learning simulates the information pro- 

cessing of humans and can efficiently learn high-level features 

from pixel-level data through a hierarchical multilayer framework. 

In the medical imaging community, the research has mainly fo- 

cused on image analysis, including nuclei detection [24] , organ seg- 

mentation, and classification [25–27] . Recently, Wang et al. pro- 

posed a compressive sensing based MRI (CS-MRI) model to ac- 

celerate reconstruction based on convolutional neural networks 

(CNNs) [28] . The mean square error (MSE) loss function of deep 

learning was imposed into the energy function as a regulariza- 

tion term. Kang et al. introduced a U-Net based CNN into low- 

dose CT restoration (KAIST-Net). The high frequency coefficients 

after wavelet decomposition were used as the inputs of this sy- 

metrical residual network [29] . A 5-layer convolutional denoising 

autoencoder (CDA) network with maxpooling layers was given by 

Gondara to decrease the number of parmaters and transfer the ad- 

vantage of CNN for image processing [30] . Combining the idea of 

autoencoders and residual CNN, Chen et al. proposed a residual 

encoder–decoder convolutional network for low-dose CT and ob- 

tained promising results [31] . Meanwhile, the popular technique, 

generative adversarial network (GAN), was also introduced into 

this topic. With the help of an auxiliary adversarial discriminator 

CNN, Wolterink et al. achieved a better performance than CNN on 

task-driven evaluations [32] . Jin et al. [33] and Han et al. [34] sep- 

arately presented sparse view CT restoration methods to remove 

streak artifacts with simialr network architecture as that in [29] . 

Würfl et al. mapped the FBP identically onto a deep neural net- 

work architecture. The weights of projections were learned by the 

training samples. This work is instructive for image reconstruction 

with deep learning [35] . Prliminary trials were given by two sep- 

arate groups. Adler and Oktem proposed a learned primal-dual al- 

gorithm for tomographic reconstruction, which included the for- 

ward operator in a deep neural network inspired by unrolled prox- 

imal primal-dual optimization methods [36] . Chen et al. unfolded 

the general iterative reconstruction framwork into a CNN [37] . Both 

regularization terms and parameters can be learned from the train- 

ing samples. Although limited studies have been published on this 

topic, it shows a large amount of future promise [38] . 

In this paper, we introduce stacked sparse denoising autoen- 

coders (SSDAs) into low-dose CT imaging. Actually, there are sev- 

eral different architectures we can choose for dealing with low- 

dose CT, such as CNNs, multi-layer perceptrons (MLPs), restricted 

Boltzmann machines (RBMs), and SSDAs [22] . In this work, we 

chose SSDA, which is especially designed for noisy data and more 

suitable for our task [33] . In the next section, the network and 

training details are described. In the third section, qualitative and 

quantitative experimental results are given. In the last section, a 

discussion is presented and the conclusion is drawn. 

2. Methods 

2.1. Noise reduction model for low-dose CT images 

Because of the encryption of the raw projection data, post- 

reconstruction restoration is a reasonable alternative. Once the tar- 

get image has been created from the low-dose scans, the problem 

is transformed into denoising in the image domain. The only dif- 

ference between low-dose CT and natural image restoration is that 

the statistical property of low-dose CT images, which cannot be 

precisely modeled in the image domain, has strong spatial corre- 

lations and variations. This property significantly impacts the per- 

formance of noise-dependent methods, such as the median filter, 

Gaussian filter, and TV, which are designed for a specific noise 

type. It is more difficult for such techniques to achieve an optimal 

banlance between retoration performance and detail preservation, 

or to obtain consistent performance across an entire volume. The 

quantum noise in the sinogram domain will transform into com- 

plicated noise and artifacts in image domain, which will make cur- 

rent denoising methods powerless. However, learning-based meth- 

ods are immune to this problem because they are dependent on 

training samples, instead of noise type. We model the noise reduc- 

tion problem in low-dose CT images with the following formula- 

tion. 

Let x ∈ R 

m × n be a low-dose CT image and y ∈ R 

m × n be the 

corresponding normal-dose image. The following relationship can 

then be obtained [39] : 

x = σ (y ) , (1) 

where σ : R 

m × n → R 

m × n r epr esents the corrup tion of the quantum 

noise that contaminates the normal-dose CT image. The noise re- 

duction problem can then be converted into the task of finding a 

function f such that 

f = arg min 

f 

|| f (x ) − y || 2 2 , (2) 

where f is treated as the best approximation of σ−1 . 

2.2. SSDA for low-dose CT 

A denoising autoencoder (DA) [39–41] , which is a natural choice 

for image restoration tasks, is trained to reconstruct a clean output 

from a noisy input. Assuming x is a low-dose CT image and y is 

the corresponding normal-dose one, the feedforward functions of 

the DA can be defined as follows: 

h (x ) = s ( Wx + b ) (3) 

and 

z(x ) = s (W 

′ h (x ) + b 

′ ) , (4) 

where � = { W , b , W 

′ , b 

′ } is the set of the weights and biases, 

s (t) = (1 + exp (−t)) −1 is the sigmoid function, h ( x ) is the hidden 

layer activation, and z ( x ) is an approximation of y . 

Given low-dose CT image training data set D = { ( x i , y i ) } , where 

i = 1 , 2 , . . . , N and N denotes the total number of training samples, 

the sparse denoising autoencoder (SDA) is trained by a backprop- 

agation algorithm to minimize the following sparsity regularized 

reconstruction loss function: 

J(D ;�)= 

1 

N 

N ∑ 

i =1 

1 

2 

|| z( x i ) −y i || 2 2 + βKL ( 
∧ 
ρ || ρ) + 

λ

2 

(|| W || 2 F + || W 

′ || 2 F ) , 

(5) 

where β is the sparsity term parameter and λ is the weight 

decay term parameter. The sparsity term is the Kullback–Leibler 
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