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a b s t r a c t 

In this paper, a distributed event-triggered algorithm was proposed to solve a convex quadratic optimiza- 

tion problem of multi-agent systems under undirected and connected topologies. The event-triggered 

condition of each agent just requires its own state value and the state values of its neighbors at the trig- 

gering time, and hence the continuous communication and calculation are not required. Moreover, the 

minimum event-triggered interval is bounded by the sampling time and the Zeno behavior is therefore 

naturally avoided. The result is also extended to the networks with undirected and switching topologies. 

Numerical simulations show the effectiveness of the proposed approach. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Over the past decade, various distributed coordination problems 

of multi-agent systems (MASs) have been extensively investigated 

due to their applications in many areas, such as surveillance sys- 

tems, cooperation of multi-robot systems, intelligent transporta- 

tion systems, and distributed economic dispatch of macro-grid, etc 

[1–6] . As a fundamental problem of the distributed coordination 

research, distributed consensus problem that aims to guarantee 

that a group of agents achieve consensus by exchange information 

with their neighbors is a hot focus [7] . As an application of dis- 

tributed consensus, distributed optimization problems such as eco- 

nomic dispatch problem, optimal portfolio problem, optimal clus- 

tering problem, and resource optimization allocation problem have 

attracted great attention. 

The distributed optimization problem with/without constraints 

aims to apply distributed algorithms to solve the optimization 

problem with the objective function being the sum of each agent’ 

local objective function. Motivated by the distributed cooperative 

algorithms of MASs, distributed optimization schemes have been 
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extensively investigated and proposed [8–20] . The distributed op- 

timization algorithms can be classified into two categories: contin- 

uous algorithms [11,12,17–19] and discrete iterative algorithms [8–

10,13–16] . These algorithms require agents to communicate with 

their neighbors continuously or periodically. Since each agent of 

multi-agent systems is equipped with an embedded digital micro- 

processor, control algorithms for multi-agent systems are tradition- 

ally implemented in periodic sample control mode in practice. Due 

to the lack of microprocessor energy, computational resource and 

communication capability, event-triggered control may be more 

suitable for the multi-agent systems. Compared with the tradi- 

tional time triggered control and periodic sample control, event- 

triggered control can reduce the burden of computation and save 

the energy of systems. 

Recently, distributed event-triggered control strategies are in- 

vestigated and applied to solve consensus problem of MASs. Based 

on the work in [21] , a distributed event-triggered scheme is pro- 

posed to solve the first order consensus problem and the event 

depends on the ratio of the measurement error to the norm of 

the local state function [22] . Meanwhile, the results were extended 

to a self-triggered setup where it is not required to keep track of 

the state error. The work in [23] presented a distributed event- 

based control strategy to solve the multi-agent average consen- 

sus problem and each agent’s measurement error in the event- 

triggered condition was bounded by a time-dependent threshold. 

However, these algorithms in [22,23] require agents in the sys- 

tem to communicate with their neighbors continuously, which 
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increases the communication consumption of systems. The work 

in [24] uses a combinational measurement approach to design 

the triggered event for rendezvous problem of multi-agent sys- 

tems, where the continuous measurement of neighbors’ states is 

avoided. In [25] , two event-triggered conditions with or without 

continuous communication between neighboring agents were pre- 

sented to solve the consensus problem, where the control input 

for each agent is only triggered at its own event time instants. The 

work in [26] considered the event-triggered control problem of ho- 

mogenous multi-agent systems with switching topology. In [27] , a 

self-triggered algorithm was developed and continuous monitoring 

of measurement errors was avoided. The work in [28] also apply 

the event-triggered control scheme to solve the average consensus 

problem of multi-agent systems, where the agents communicated 

with its neighbors and updated the control input only at the event 

instants. Meanwhile, a self-triggered algorithm was developed to 

avoid the continuous self state monitoring. However, all these al- 

gorithms mentioned above are implemented in continuous mode 

and the Zeno behavior is a common problem which is required 

to be carefully dealt with. The work in [29] addressed the con- 

sensus problem of multi-agent systems by using a sampled-data 

event detector, where the minimum inter-event time was bounded 

by the sampling period and the Zeno behavior was well solved. 

However, each agent and its neighbors are required to exchange 

information at each sampling instants. Based on the work in [29] , 

sampling-based self-triggered consensus algorithm was proposed 

in [30] , where the periodic communication at each sampling in- 

stants was not required. 

To the best of our knowledge, only a few works have dis- 

cussed the distributed optimization problem via distributed event- 

triggered schemes [31,32] . However, these works consider the dis- 

tributed optimization problems without constraints. Motivated by 

the works [29] and [30] , we present a distributed event-triggered 

algorithm to solve the convex quadratic optimization problem 

with equality constraints. By the Lyapunov method, the proper 

event-triggered conditions are designed and some sufficient con- 

ditions are derived to guarantee the convergence of the algo- 

rithm to the optimal solutions. Moreover, the Zeno behavior is 

avoided. The novelties of this paper lie in the following three 

aspects: 

(1) We have skillfully converted the convex quadratic opti- 

mization problem with equality constraint to a distributed 

weighted average consensus problem and solved it via a dis- 

tributed event-triggered strategy. The continuous or periodi- 

cal communication and computation for each agents are not 

required. Therefore, the proposed algorithm has the poten- 

tial to further reduce the communication and calculation 

burden and save the energy. 

(2) The minimum inter-event time is bounded by the sam- 

pling period and the Zeno behavior is avoided. Moreover, ac- 

cording to the stability condition derived in the paper, the 

bounds of the sampling period and other parameters can be 

set in a easy way. Meanwhile, the impacts of the parameters 

have been analyzed. 

(3) The constrained quadratic optimization problem for multi- 

agent systems under switching topology is also analyzed. 

The rest of this paper is organized as follows. In Section 2 , 

some basic concepts for algebraic graph theory are introduced and 

the constrained quadratic optimization problem is formulated. The 

distributed event-triggered algorithms under the fixed/switching 

topology and the detailed stability analysis are given in Section 3 . 

The simulation results are presented in Section 4 . Section 5 gives a 

summary of this paper. 

2. Preliminaries and problem formulation 

2.1. Basic graph theory 

The network of multi-agent system can be modeled as a graph 

G = ( V, E, A ) . V = { v 1 , . . . , v n } is the set of nodes that denotes the 

agents. E ∈ { V × V } is the edge set. ( v i , v j ) ∈ E indicates that node 

j can receive information from node i. A ∈ R n × n with elements 

a i, j represents the adjacency matrix of graph G . If ( v i , v j ) ∈ E , 

a i j = 1 , otherwise, a i j = 0 . It is assumed that there is no self- 

loop in graph G , and then a ii = 0 . The degree matrix D of graph 

G is diag{ d 1 , d 2 , . . . , d n } with d i = 

∑ n 
j=1 a i j . The Laplacian matrix 

L = 

[
l i j 

]
n ×n 

of graph G is defined as l ii = 

∑ 

i � = j a i j for on-diagonal 

elements and l i j = −a i j for off-diagonal elements. 

For an undirected graph G , ( v i , v j ) ∈ E implies ( v j , v i ) ∈ E and 

a i j = a ji . The adjacency matrix A and the Laplacian matrix L are 

symmetrical. v i and v j are connected if there has a path consisted 

of a sequence of edges of the form (v 1 , v 2 ) , (v 2 , v 3 ) , . . . , in the 

graph. An undirected graph G is a connected graph if any pair 

of nodes in the graph are connected. For an undirected and con- 

nected graph, 0 is a simple eigenvalue of L . The largest eigenvalue 

λn ( L ) of L is upper-bounded by 2 d max , i.e., λn ( L ) < 2 d max where 

d max = max { d i , i = 1 , 2 , . . . , n } and d max ≤ n − 1 . 

2.2. Problem formulation 

Definition 1 [33] . A convex optimization problem is to find some 

x ∗ ∈ χ such that 

f ( x ∗) = min { f ( x ) : x ∈ χ} 
for a convex constraint χ ∈ R n and a convex objective function f ( x ): 

R n → R . 

The convex optimization problem investigated in this paper is 

stated as (2.1) and (2.2) . 

minimize 
x 1 , ... , x n 

n ∑ 

i =1 

C i ( x i (t) ) (2.1) 

subject to 

n ∑ 

i =1 

x i (t) = X D , (2.2) 

where 

C i ( x i (t) ) = αi x 
2 
i (t) + βi x i (t) + ϕ i (2.3) 

for x i ( t ) ≥ 0 and αi , β i , ϕi are the coefficients of the quadratic 

function C i ( x i ( t )). The coefficient αi satisfies αi > 0 such that the 

function C i ( x i ( t )) is a convex function. The value X D is a con- 

stant and provides a constrain to the sum of 
∑ n 

i =1 x i ( t ) . Therefore, ∑ n 
i =1 C i ( x i (t) ) is a convex function with respect to x 1 (t) , . . . , x n (t) . 

The convex quadratic optimization problem (2.1) with equality 

constraint (2.2) appears in the economic dispatch, the resources al- 

location, the optimal portfolio, and so on. 

The problem (2.1) and (2.2) can be solved by the conventional 

centralized methods. The centralized methods need the informa- 

tion of all nodes and are not suitable for multi-agent systems. One 

of the purposes of this work is to provide a distributed solution. 

Based on the Lagrange multiplier method, one has that the solu- 

tion set of (2.1) and (2.2) is equivalent to the solution set of (2.4) . 

∂ C 1 ( x 1 (t) ) 

∂ x 1 (t) 
= 

∂ C 2 ( x 2 (t) ) 

∂ x 2 (t) 
= · · · = 

∂ C n ( x n (t) ) 

∂ x n (t) 
= η∗. (2.4) 

where η∗ is the optimal Lagrangian multiplier. 

In light of (2.3), (2.4) is equivalent to 

2 α1 x 1 ( t ) + β1 = 2 α2 x 2 ( t ) + β2 = · · · = 2 αn x n ( t ) + βn = η∗. (2.5) 
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