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a b s t r a c t 

This paper presents a projection based iterative method (PIM) for solving the L 1 -minimization problem 

with its application to sparse representation and reconstruction. First, the unconstrained basis pursuit 

denoising (BPDN) problem is transformed into the cross-and-bouquet (CAB) form with a variable λ, and 

an iterative algorithm is proposed based on the projection method with the gradient of ‖ x ‖ 1 being trans- 

formed into a piecewise-linear function, which enhances the convergence of the algorithm. The global 

convergence of the algorithm is proved by Lyapunov method. Then, experiments conducted on random 

Gaussian sparse signals reconstruction and five well-known face data sets present the effectiveness and 

robustness of the proposed algorithm. It is also shown that the algorithm is robust to different sparsity 

levels and amplitude of signals, and has higher convergence rate and recognition accuracy compared with 

other L 1 -minimization algorithms especially in the case of noise interference. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years, sparse representation is an important research 

topic in computer vision, especially on face recognition [1,2] . In 

the theory of sparse representation, test signal is represented by 

the sparse combination of the known signals, which can reduce 

the computational complexity. It is named as sparse representation 

based classification (SRC), which has been wildly used in many real 

applications. 

In the literature, the sparse representation problem is always 

transformed into nonlinear optimization, especially L 0 and L 1 - 

minimization problems. Many classic algorithms have been pro- 

posed for the minimization problems. An interior point algorithm 

is proposed in [3] , which main idea is to transform the inequal- 

ity constrained problem into an equality constrained problem and 

solve it by Newton method. To solve the basis pursuit problem, 

the Homotopy method [4] is specifically designed with least ab- 

solute shrinkage and selection operator. Methods based on local 

linear approximation, such as proximal-point method [5] , reduced 

the computational complexity greatly. Also Lagrange dual method 

[6] , and gradient projection method [7] have been proved efficient 

for solving the optimization problem. 

More recently, some methods inspired by neural networks have 

been put up to solve the sparse representation problem. In [8–10] , 
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convolution neural network (CNN) has been applied to face recog- 

nition and proved effective in the experiments. Meanwhile, some 

recurrent neural networks based methods also have been applied 

in convex optimization. In [11,12] , continuous-time recurrent neu- 

ral networks have been used for linear programming problem. In 

[13,14] , discrete-time recurrent neural networks are proposed for 

quadratic programming, and in [15,16] , projection neural networks 

have been applied to solve variational inequalities and related op- 

timization problems. The dynamical behavior and the convergency 

of the neural networks have been analyzed, and could be used for 

solving the sparse reconstruction problem. 

In this paper, the proposed projection based iterative method 

is to solve the L 1 -minimization problem based on CAB model 

that is equivalent to the unconstrained basis pursuit denoising 

(BPDN) problem. The method is based on projection operators, 

transformed the L 1 -norm gradient into piecewise-linear function to 

enhance the convergence of the algorithm, and the global conver- 

gence is studied and proved by constructing the Lyapunov function. 

The proposed method is applied for real applications, such as 

sparse signal reconstruction, face recognition with and without 

occlusion. The experimental results illustrate the effectiveness and 

robustness of the algorithm compared with the traditional SRC 

methods, the primal augmented Lagrangian method (PALM) which 

solves the original L 1 -norm problem, truncated Newton interior- 

point method (TNIPM/L1LS) and fast iterative soft-thresholding 

algorithm (FISTA) which solve the L 1 -norm problem with con- 

strained condition. Furthermore, we compare the proposed 

algorithm with two state-of-the-art approaches based on robust 

regression models (RRM), the robust sparse coding (RSC) [17] and 
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regularized robust coding (RRC) [18] . In the experiments, we 

combine the proposed algorithm with deep learning methods to 

improve the classification accuracy. The Deep Convolution Neural 

Network (DCNN) model named VGG-face [19] are utilized to 

extract the image features for training and testing, and then the 

proposed algorithm is utilized for classification. 

The paper is organized as follows. In Section 2 , the related work 

of the spare representation problem is described. In Section 3 , the 

BPDN problem is transformed into a new form, and the projection 

operator based iterative method is proposed and analyzed. Experi- 

ments on signal reconstruction and face recognition are conducted 

in Section 4 . Finally, Section 5 concludes the paper. 

2. Related work 

The constrained optimization has been widely used to approxi- 

mate sparse signals in compressive sensing theory. We assume an 

unknown signal x ∈ R 

n which is sparse, a test vector b ∈ R 

m , and 

a dictionary matrix A ∈ R 

m ×n , satisfying the constrained condition 

b = Ax . The main purpose of the sparse representation can be re- 

garded as an inverse problem, obtaining x with the known A and 

b , which can be calculated by the L 0 -minimization problem as fol- 

lowing: 

minimize ‖ x ‖ 0 , 

subject to Ax = b, (1) 

where ‖ · ‖ 0 is the L 0 -norm. 

The optimization problem in (1) is a NP-hard problem. Accord- 

ing to the Restricted Isometry Property (R.I.P) condition, if the 

solution to the L 0 -minimization problem is sparse enough, it is 

equivalent to the following L 1 -minimization problem: 

minimize ‖ x ‖ 1 , 

subject to Ax = b, (2) 

where ‖ · ‖ 1 is the L 1 -norm. 

Another form of the L 1 -minimization problem is called the un- 

constrained basis pursuit denoising (BPDN) problem with a scalar 

weight λ: 

minimize 
1 

2 

‖ Ax − b‖ 

2 
2 + λ‖ x ‖ 1 . (3) 

In this unconstrained problem, the noise is described by the L 2 - 

norm; i.e., ‖ Ax − b‖ 2 . 
Considering the situation where the test vector b is with an ad- 

ditional noise term e , there is another model called the cross-and- 

bouquet (CAB) model proposed in [20] as following 

minimize ‖ z‖ 1 , 

subject to [ A, I] z = b, (4) 

where I ∈ R 

n ×n is an identity matrix and z = [ x T , e T ] T ∈ R 

m + n . In 

the new dictionary [ A, I ], the columns are highly correlated. The 

training vectors are tightly bundled as a “bouquet”, and the vec- 

tors in the identity matrix and their negative counterparts form a 

“cross”. 

3. Projection based iterative method 

Considering the noise that is described by the L 1 -norm in 

(3) and the corresponding optimization problem is as follows 

minimize ‖ Ax − b‖ 1 + λ‖ x ‖ 1 . (5) 

Let λy = b − Ax, then problem (5) can be equivalently written 

as 

minimize λ‖ x ‖ 1 + λ‖ y ‖ 1 , 

subject to Ax + λy = b. (6) 

Let z = (x T , y T ) T and B = (A λI) , then problem (6) can be fur- 

ther written as the CAB problem 

minimize λ‖ z‖ 1 , 

subject to Bz = b. 
(7) 

3.1. Projection operator 

To solve the problem (7) , we define the projection operator g ( u ) 

(from R 

n to � ⊆ R 

n ) as 

g(u ) = arg min 

v ∈ �
‖ v − u ‖ 2 , 

where ‖ · ‖ 2 is the L 2 -norm. 

Here � = { u ∈ R 

n : −1 ≤ u i ≤ 1 , i = 1 , 2 , . . . , n } is a hyper- 

rectangular set, and we have 

g(u i ) = 

{ 

1 , u i > 1 , 

u i , −1 ≤ u i ≤ 1 , 

−1 , u i < −1 , 

which is a piecewise-linear function. 

Lemma 1 [21] . For the projection operator g ( · ), the following in- 

equality is true 

(h − v ) T 
(
g(h ) − g(v ) 

)
≥ ‖ g(h ) − g(v ) ‖ 

2 
2 ∀ h, v ∈ R 

n . 

3.2. Method description 

According to the Karush–Kuhn–Tucker (KKT) conditions [22] , 

z ∗ ∈ R 

m + n is an optimal solution to problem (7) if and only if there 

exist γ ∗ ∈ ∂( ‖ z ∗‖ 1 ) and w 

∗ ∈ R 

m satisfying 

λγ ∗ + B 

T w 

∗ = 0 , (8) 

Bz ∗ = b, (9) 

where ∂( ‖ z ∗‖ 1 ) is the sub-differential of ‖ z ‖ 1 at z ∗, and the i th 

component is defined as 

∂ i (‖ z ∗‖ 1 ) = 

{ 

1 , z ∗
i 

> 0 , 

[ −1 , 1] , z ∗
i 

= 0 , 

−1 , z ∗
i 

< 0 . 

(10) 

Then, we have 

γ ∗ = g(γ ∗ + z ∗) . 

Let u ∗ = γ ∗ + z ∗, then γ ∗ = g(u ∗) and z ∗ = u ∗ − g(u ∗) . If the 

both sides of Eq. (8) are multiplied by B , it implies 

w 

∗ = −λ(BB 

T ) −1 Bg(u 

∗) . (11) 

Substituting (11) into (8) results in 

(I − P ) g(u 

∗) = 0 , (12) 

where P = B T (BB T ) −1 B, and has the following property: P 2 = P . 

According to (9) , there is P z ∗ = q which is equivalent to P (u ∗ −
g(u ∗)) = q, where q = B T (BB T ) −1 b. Combining with (12) , we have 

P (u 

∗ − g(u 

∗)) + (I − P ) g(u 

∗) − q = 0 , (13) 

where u ∗ is the equilibrium point, and its corresponding value z ∗

is the optimal solution of problem (7) . 

Taking (13) as the decent value, the sparse reconstruction algo- 

rithm is written as: 

u k +1 = (I − P ) u k − (I − 2 P ) g(u k ) + q, (14a) 

z k = u k − g(u k ) . (14b) 

According to (14), the Algorithm 1 for solving the problem (7) is 

stated as following. 
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