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a b s t r a c t 

The ubiquitous large, complex and high dimensional datasets in computer vision and machine learning 

generate the problem of subspace clustering, which aims to partition the data into several low dimen- 

sional subspaces. Most state-of-the-art methods divide the problem into two stages: first learn the affin- 

ity from the data and then infer the cluster labels based on the affinity. The Structured Sparse Subspace 

Clustering (SSSC) model combines the affinity learning and the label inferring into one unified framework 

and empirically outperforms the two-stage methods. However, the SSSC method does not fully utilize the 

affinity and the labels to guide each other. In this work, we present a new regularity which combines 

the labels and the affinity to enforce the coherence of the affinity for data points from the same cluster 

and the discrimination of the labels for data points from different clusters. Based on this, we give a new 

unified optimization framework for subspace clustering. It enforces the coherence and discrimination of 

the affinity matrix as well as the labels, thus we call it Discriminative and Coherent Subspace Clustering 

(DCSC). Extended experiments on commonly used datasets demonstrate that our method performs better 

than some two stage state-of-the-art methods and the unified method SSSC in revealing the subspace 

structure of high-dimensional data. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In the past few years, technology advances have made data col- 

lection easier and faster, resulting in large, multimodal and high- 

dimensional datasets. How to effectively compress, store, transmit 

and process massive amounts of such complex high-dimensional 

data has become a necessary and urgent task. Many existing meth- 

ods [1] have exploited the observation that the high-dimensional 

data usually lie in a union of several low-dimensional subspaces or 

affine spaces. For instance, the face images of a subject obtained 

under a wide variety of lighting conditions can be accurately ap- 

proximated with a 9-dimensional linear subspace [2] . This has mo- 

tivated the problem of subspace clustering, which aims to parti- 

tion the data points into several low dimensional subspaces and 

has found numerous applications in computer vision (e.g., image 

segmentation [3] , motion segmentation [4] and face clustering [5] ), 

image processing (e.g., image representation and compression [6] ) 

and systems theory (e.g., hybrid system identification [7] ). 

Among the existing subspace clustering methods [8–44] , the 

spectral clustering based methods [23–44] are becoming more 

popular because they are easy to be implemented, and insensi- 
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tive to initialization and data corruptions. Most spectral clustering 

based methods divide the problem into two separate stages. First 

an affinity matrix is learned from the data by using so called self- 

representation such as Sparse Subspace Clustering (SSC) [28,29] , 

Low-rank Representation (LRR) [30] and some hybrid representa- 

tion based on SSC or LRR. Then the labels are learned by a spec- 

tral clustering method such as Ncut [45] . Although the two-stage 

methods succeed in many applications, they have a major disad- 

vantage: the relationship between the affinity matrix and the la- 

bels of the data is not fully exploited, thus they cannot guarantee 

an overall optimal performance. 

By combining the two stages into one unified framework, the 

Structured Sparse Subspace Clustering (SSSC) [44] has shown that 

the overall performance of subspace clustering can be greatly im- 

proved. Actually, SSSC uses the self-representation coefficients and 

the labels to guide each other interactively so that both the affinity 

and the labels have some advantageous properties. Specifically, it 

uses the labels to enforce the affinity for data points from different 

clusters be sparse. Such a property of the affinity is called cluster 

discrimination property. On the other hand, the self-representation 

is used to guide the label inferring so that the data points from the 

same cluster could have same labels. We call this property of the 

labels coherence property. 

Although this unified framework outperforms the two-stage 

methods, it has some shortcomings. It only enforces the sparse- 

ness/discrimination of the affinity matrix for data points from 

https://doi.org/10.1016/j.neucom.2018.01.006 

0925-2312/© 2018 Elsevier B.V. All rights reserved. 

Please cite this article as: H. Chen et al., Discriminative and coherent subspace clustering, Neurocomputing (2018), 

https://doi.org/10.1016/j.neucom.2018.01.006 

https://doi.org/10.1016/j.neucom.2018.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:chenhuazhu2001@126.com
mailto:wwwang@mail.xidian.edu.cn
mailto:xcfeng@mail.xidian.edu.cn
mailto:ruiqianghe@sina.com
https://doi.org/10.1016/j.neucom.2018.01.006
https://doi.org/10.1016/j.neucom.2018.01.006


2 H. Chen et al. / Neurocomputing 0 0 0 (2018) 1–10 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; January 27, 2018;21:7 ] 

different clusters and the coherence of labels for data points from 

the same cluster. It does not consider the coherence of the affinity 

for data points from the same cluster or the discrimination of the 

labels from different clusters. In all, the coupling of the affinity and 

the labels is not fully exploited. 

In this work, we present a new regularity which combines the 

labels and the affinity to enforce coherence of the affinity and dis- 

crimination of labels. We combine it with the structure sparse reg- 

ularity in SSSC to give a new unified optimization framework for 

subspace clustering. The main contributions of this work can be 

summarized as follows: 

We present a label-guided regularity to ensure the coherence 

of the affinity for data points from the same cluster and the dis- 

crimination of the labels for data points from different clusters. 

By combining the label-guided regularity with the structure sparse 

regularity in SSSC [44] , we give a new unified optimization frame- 

work for subspace clustering. It enforces the coherence and dis- 

crimination of the affinity matrix as well as the labels, thus we call 

it Discriminative and Coherent Subspace Clustering (DCSC). It can 

better recover the subspace structure underlying high dimensional 

datasets and provide more exact clustering results. 

Experiments on several commonly used datasets show that 

our method outperforms other state-of-the-art subspace cluster- 

ing methods including SSC [28,29] , LRR [30] , LRSC [32] , LSR [33] , 

CASS [34] , TSC [39] , NSN [41] , SSSC [44] , LatLRR [46] , BDSSC [47] , 

BDLRR [47] and OMP [48] . 

2. Related works 

Let X = [ x 1 , x 2 , . . . , x N ] ∈ R n ×N be a set of N (sufficiently many) 

sample points, with each column x i being an n-dimensional fea- 

ture vector, drawn from a union of K subspaces { S c } K c=1 
of unknown 

dimensions { r c } K c=1 , respectively. Subspace clustering aims to seg- 

ment the data into the underlying subspace from which they are 

drawn. 

For convenience, we define some notations used in this work 

before reviewing related works. 

For a matrix Z = (z i j ) = ( z 1 , z 2 , . . . , z N ) ∈ R N×N with z j being the 

j th column, ‖ Z‖ 1 = 

∑ 

i, j | z i j | and ‖ Z‖ F = 

√ ∑ 

i, j | z i j | 2 are respec- 

tively the � 1 -norm and the Frobenious norm of the matrix Z . ‖ Z ‖ ∗
is the trace norm, i.e., the sum of the singular values of the matrix 

Z. diag ( Z ) ∈ R N × N is the diagonal matrix whose diagonal elements 

are z ii ( i = 1 , . . . , N). Diag ( z ) denotes a diagonal matrix whose i th 

diagonal element corresponds to the i th entry of the vector z. 

1 ∈ R N denotes the vector of all 1 
′ 
s . 

Define the cluster indicator matrix Q = (q i j ) ∈ R N×K by 

q i j = 

{
1 , i f x i ∈ S j 
0 , i f x i / ∈ S j 

(1) 

Denote the i th row by Q ( i , : ) and j th column by Q (:, j ), then 

the row Q ( i , : ) is the cluster label of the data point x i and the 

column Q (:, j ) indicates which points belong to cluster S j . Assume 

that each data point lies in exactly one subspace or cluster, then 

each row of Q has only one entry equal to 1, thus a valid cluster 

indicator matrix Q satisfies Q1 = 1 . In addition, it is expected that 

Q has only K different rows due to K subspaces. So Q also satisfies 

rank (Q ) = K. We define the collection of cluster indicator matrices 

as 

Q = { Q ∈ { 0 , 1 } N×K : Q1 = 1 and rank (Q ) = K} (2) 

Let Q 

( j ) be an N × N j submatrix of Diag ( Q (:, j )), consisting of 

the N j nonzero columns of the N × N diagonal matrix Diag ( Q (:, j )). 

Based on Q , we define P = (p i j ) by 

p i j = 

1 

2 

‖ Q(i, :) − Q( j, :) ‖ 

2 
2 = 

{
1 , i f Q(i, :) = Q( j, :) 
0 , i f Q( i, :) � = Q( j, :) 

(3) 

which indicates whether the data points x i and x j have the same 

label, and thus whether they are drawn from the same cluster. So 

we call P the data connection matrix. 

One of the main challenges in spectral clustering-based sub- 

space clustering is how to learn a good affinity matrix A = (A i j ) , 

where A ij measures the similarity between the data points x i and 

x j . Recently, many works apply the self-representation to learn the 

affinity. These methods first find a self-representation matrix Z of 

the data matrix X by solving the following minimization problem: 

min 

Z,E 
�(Z) + λ�(E) s.t. X = X Z + E, Z ∈ C , (4) 

where �( Z ) and C are the regularity and constraint set, which im- 

pose some expected properties on Z. λ is a tradeoff parameter. 

�( E ) is a function penalizing the representation error, corruptions 

or outliers in the data points. ‖ E‖ 2 
F 

is usually used for Gaussian 

noise and ‖ E ‖ 1 is used for sparse entry-wise corruptions. The op- 

timal solution Z ∗ of problem (4) is used to compute the affinity 

matrix. A commonly used formula is 

A = (| Z ∗| + | Z ∗T | ) / 2 (5) 

which is further input into a spectral clustering algorithm to pro- 

duce the final clustering result. 

The primary difference between different methods lies in the 

choice of the regularization term of Z . For example, in the Sparse 

Subspace Clustering (SSC) [28,29] , ‖ Z ‖ 1 is used as a convex surro- 

gate of ‖ Z ‖ 0 to promote sparsity of Z . In the Low-Rank Represent 

(LRR) [30] ‖ Z ‖ ∗ is used to seek a jointly low-rank representation of 

all data. SSC and LRR show empirical success in some high dimen- 

sional datasets. However, a large body of works has shown that 

SSC performs only optimally in representing data with low cor- 

relation and it has the instability problem: if the data from the 

same subspace are highly correlated or clustered, it will only select 

one of the several related data at random and ignore other corre- 

lated data. This makes it not good for grouping correlated data. 

The LRR aims at finding the lowest rank representations of all data 

jointly. It can captured the global structures and not sensitive to 

noise. However, LRR usually leads to dense representation and re- 

sults in incorrect clustering. Besides, the number of subspaces and 

their dimensionality may not be small, thus the data matrix may 

be high-rank or even full-rank in practice. A number of variants of 

these algorithms have been proposed, including LatLRR [46] , Spa- 

tial Weighted SSC [49] , LatSSC [50] , Kernel SSC [51] , etc. 

While the above methods have been incredibly successful in 

many applications, their major disadvantage is that the natural re- 

lationship between the coefficient matrix and the segmentation of 

the data is not explicitly captured. The Structured Sparse Subspace 

Clustering (SSSC) [44] is a unified optimization framework, which 

learns the label indicator matrix Q and the self-representation Z 

simultaneously by solving the following problem: 

min 

Z,E,Q 
‖ Z‖ 1 + α‖ P � Z‖ 1 + λ�(E) s.t. X = X Z + E, 

diag(Z) = 0 , Q ∈ Q , (6) 

where the operator � indicates the Hadamard product (i.e., 

element-wise product). α > 0 and λ> 0 are tradeoff parameters. 

The unified framework SSSC empirically outperforms the two-stage 

methods. 

3. Discriminative and coherent subspace clustering: a unified 

framework 

3.1. Motivation 

Ideally, the affinity and the labels should be coherent within 

clusters and discriminative between clusters. Specifically, for the 
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