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a b s t r a c t 

Since principal component analysis (PCA) is sensitive to corrupted variables or observations that affect 

its performance and applicability in real scenarios, some convex robust PCA methods have been devel- 

oped to enhance the robustness of PCA. However, most of them neglect the optimal mean calculation 

problem. They center the data with the mean calculated by the � 2 -norm, which is incorrect because the 

� 1 -norm objective function is used in the following steps. In this paper, we consider a novel robust PCA 

method that can pursue and remove outliers, exactly recover a low-rank matrix and calculate the opti- 

mal mean. Specifically, we propose an optimization model constituted by a � 2,1 -norm based loss function 

and a Schatten p -norm regularization term. The � 2,1 -norm used in loss function aims to pursue and re- 

move outliers, the Schatten p -norm can suppress the singular values of reconstructed data at smaller 

p (0 < p < 1), so it is a better approximation to the rank than the trace norm. Experimental results on 

benchmark databases demonstrate the effectiveness of our proposed algorithm. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Finding and exploiting low-dimensional structure in high- 

dimensional data is a key research topic in many fields, such as 

image processing, web relevancy data analysis and search, bioinfor- 

matics, and so on [1–6] . The original data usually lie in thousands 

or even millions of dimensions [7,8] in such applications. To allevi- 

ate the curse of dimensionality , researchers utilize the fact that the 

data approximately have low intrinsic dimensionality inferred from 

the low-dimensional subspace [9,10] , sparse basis [11–13] or low- 

dimensional manifold [14–18] . One of the most widely used tech- 

niques for dimensionality reduction is principal component analy- 

sis (PCA) [19] , which finds a lower-dimensional approximating sub- 

space using singular value decomposition (SVD) to form a low-rank 

approximation. However, standard PCA is brittle with grossly cor- 

rupted variables or observations, thus numerous robust PCA meth- 

ods [20–28] have been proposed to enhance the robustness of PCA. 

Recently, several convex robust PCA methods with encourag- 

ing results have been developed to improve the robustness of PCA, 

like robust PCA via proximal gradient with continuation (RPPGC) 

[9] and robust PCA via outlier pursuit (RPOP) [28] . More precisely, 

given a low-rank matrix D ∈ R 

n ×m , where n is the number of 
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observations, and m is the number of variables. Suppose: 

D = A 0 + E 0 , (1) 

where A 0 ∈ R 

n ×m is a low-rank matrix and E 0 ∈ R 

n ×m is a noise 

matrix. Robust PCA methods [9,28,29] seek the best rank- k estima- 

tion of A 0 by solving: 

min ‖ 

D − A ‖ ρ, s.t. rank (A ) ≤ k, (2) 

where ‖ · ‖ ρ represents different norms and indicates certain strat- 

egy for enchaining the robustness of PCA. As the � 1 -norm is used 

in Eq. (2) , like RPPGC, E 0 should be a matrix with sparsely dis- 

tributed noise elements (as shown in Fig. 1 a), because the � 1 -norm 

minimization, as the minimum convex function to the � 0 -norm 

minimization, can lead to some zero elements in column vectors 

[9] ; as selecting the � 2,1 -norm in Eq. (2) , like RPOP, E 0 is non-zero 

in only a fraction of rows (as shown in Fig. 1 b), because the � 2,1 - 

norm minimization, as the closest convex function of the � 2,0 -norm 

minimization, encourages the row-sparsity so that it can pursue 

and remove the outliers. rank ( A ) is used for noisy data recovery. 

Since the rank minimization is a non-convex problem, rank ( A ) is 

usually replaced by the trace norm (nuclear norm) term ‖ A ‖ � , the 

minimum convex hull of rank ( A ). Furthermore, the optimization 

model composing of the trace norm term does not consider the 

case that the singular value of reconstructed data could be greatly 

suppressed, thus Schatten p -norm term suppressing the singular 
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Fig. 1. Two typical types of noise (white points represent noise). (a) Randomly cor- 

ruption, this case can be handled by the � 1 -norm and (b) corrupted data points, 

which can be better handled by the � 2,1 -norm. 

values at smaller p (0 < p < 1), which is more approximate to the 

rank, has been proposed to replace the trace norm term, e.g. min- 

imal shrinkage for noisy data recovery (MSNDR) [29] . 

Although above mentioned robust PCA methods [9,28,29] can 

enhance the robustness of PCA in many cases, they neglect the 

problem of optimal mean calculation. In effect, these robust PCA 

methods are based on one assumption that the mean of the data 

is zero. However, in most cases the mean of the data is not zero, 

so PCA is the best to approximate the given data matrix when the 

optimal mean is removed [30] . Thus the problem of PCA should 

be: 

min 

b ,rank (A )= k 

∥∥D − 1b 

T − A 

∥∥
ρ
, (3) 

where b ∈ R 

m is a mean vector, 1 ∈ R 

n is a column vector with all 

elements being one. 

Besides, the � 2 -norm distance based mean in standard PCA is 

not the correct mean in robust PCA anymore. Therefore, as con- 

sidering the optimal mean, the reconstruction error in above men- 

tioned robust PCA methods might be reduced. 

Motivated by above findings, in this paper, we propose a novel 

robust PCA method which can pursue and remove outliers, greatly 

suppress the singular values of reconstructed data, and calcu- 

late the optimal mean. Specifically, we present a novel optimiza- 

tion model constituted by a � 2,1 -norm based loss function and a 

Schatten p -norm regularization. In addition, we utilize the popular 

method, augmented Lagrange multiplier (ALM) [31] , to solve the 

proposed optimization problem, and analyze the time complex- 

ity of the optimization method. Finally, experiments on benchmark 

databases demonstrate the effectiveness of our proposed method. 

The rest of this paper is structured as follows. Section 2 intro- 

duces the notations and definitions used in this paper. Section 3 

presents the proposed robust PCA method including the optimiza- 

tion model, optimization process, and time complexity analysis. 

Section 4 reports and discusses experimental results on benchmark 

databases. Finally, Section 5 concludes our work and points out fu- 

ture research work. 

2. Notations and definitions 

In this paper, matrices are written as bold uppercase letters and 

vectors are written as bold lowercase letters. For a data matrix X = 

(x i j ) ∈ R 

n ×m , its i -th row and j -th column are denoted by x i and x j , 

respectively. The � p -norm of the vector v ∈ R 

m is defined as ‖ v ‖ p = 

( 
∑ m 

i =1 | v i | p ) 
1 
p . The � 0 -norm of the vector v is defined as ‖ v ‖ 0 = ∑ m 

i =1 | v i | 0 . If v i = 0 , | v i | 
0 = 0; otherwise, | v i | 

0 = 1. The Frobenius 

norm of the matrix X is defined as: 

‖ 

X ‖ F = 

√ 

n ∑ 

i =1 

m ∑ 

j=1 

x 2 
i j 

= 

√ 

n ∑ 

i =1 

∥∥x 

i 
∥∥2 

2 
. (4) 

The � 2,1 -norm of a matrix is widely employed to encourage 

row-sparsity [32] . It is defined as: 

‖ 

X ‖ 2 , 1 = 

n ∑ 

i =1 

√ 

m ∑ 

j=1 

x 2 
i j 

= 

n ∑ 

i =1 

∥∥x 

i 
∥∥

2 
. (5) 

For the sake of consistency, the quasi-norm � 2,0 -norm of the matrix 

X is defined as the number of non-zero rows of X . 

The extended Schatten p -norm (0 < p < ∞ ) [33] of the matrix X 

is defined as: 

‖ 

X ‖ S p 
= 

( 

min (m,n ) ∑ 

i =1 

σ p 
i 

) 

1 
p 

= 

(
T r((X 

T X ) 
p 
2 ) 

) 1 
p 
, (6) 

where σ i is the i -th singular value of X . A widely used Schatten 

norm is the Schatten 1-norm that is defined as: 

‖ 

X ‖ S 1 
= 

min (m,n ) ∑ 

i =1 

σi = T r((X 

T X ) 
1 
2 ) , (7) 

which is also named as trace norm or nuclear norm, and denoted 

by ‖ X ‖ ∗ or ‖ X ‖ � in the literature. Similarly, the Schatten 0-norm 

of the matrix X is defined as: 

‖ 

X ‖ S 0 
= 

min (m,n ) ∑ 

i =1 

σ 0 
i . (8) 

If σi = 0 , σ 0 
i 

= 0 ; otherwise, σ 0 
i 

= 1 . Based on this definition, 

‖ X ‖ S 0 = rank (X ) . 

3. Robust PCA via optimal mean (RPOM) 

In this section, we present the novel proposed robust PCA 

method, including an optimization model, the optimization process 

and computation complexity analysis. 

3.1. Optimization model 

Suppose that the observed data matrix D ∈ R 

n ×m includes γ n 

randomly located outliers (corrupted points) and (1 − γ ) n clean 

points. Then let the matrix A 0 ∈ R 

n ×m represent n clean points 

by subtracting a mean vector b 0 ∈ R 

m , and the noise matrix E 0 ∈ 

R 

n ×m have γ n non-zero rows, so D = A 0 + E 0 + 1b 

T 
0 
, where 1 ∈ R 

n 

is a column vector with all elements being one and b 0 is also a 

column vector. The problem of robust PCA via optimal mean can 

then be formulated as follows: 

Problem 1. Given D = A + E + 1b 

T , where A, b and E are un- 

known, A is known to be a low rank matrix, b is a mean vector 

and E is known to be a matrix with some non-zero rows, we would 

like to recover A and b . 

We can reformulate the Problem 1 as the following optimiza- 

tion problem: 

min 

A , b 

∥∥D − A − 1b 

T 
∥∥

2 , 0 
+ λrank (A ) . (9) 

However, both the � 2, 0 -norm minimization and the rank min- 

imization are NP-hard problems which are hard to be solved ef- 

ficiently [9,34] . In order to obtain a tractable optimization prob- 

lem, Eq. (9) is relaxed by replacing the � 2,0 -norm with the � 2,1 - 

norm, and the rank with the Schatten p -norm. The � 2,1 -norm min- 

imization is the closest convex function of the � 2,0 -norm mini- 

mization, so if D − A − 1b 

T is sufficiently row-sparse, minimizing 
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