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a b s t r a c t 

In this paper, we concentrate on the problem of global asymptotical stability for a class of Marko- 

vian jump inertial Cohen–Grossberg neural networks. The jumping parameters are described with a 

continuous-time, finite-state Markov chain. By adopting the method of model transformation, differen- 

tial mean value theorem, Lyapunov stability theory and linear matrix inequality techniques, we derive 

some novel sufficient conditions to guarantee the global asymptotical stability for the addressed systems. 

It is worth mentioning that the model investigated in this letter comprises and generalizes many exist- 

ing results in the previous literature. Finally, the effectiveness of the theoretical results is validated by 

numerical examples. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In last decades, neural networks have received widespread in- 

terests in researchers due to their wide applications in various 

fields such as pattern recognition, associative memory, parallel 

computing and image processing [1–6] . Among them, the Cohen–

Grossberg neural network (CGNN), which was first proposed by 

Cohen–Grossberg [7] , is the most representative one since it com- 

prises many popular neural networks as its special cases, such as 

Hopfield neural networks and cellular neural networks. It is rather 

general and can describe a number of models arising from neu- 

robiology, population biology and evolution theory [8] , which mo- 

tivates the investigation on the stability analysis of CGNNs [9,10] . 

On the other hand, time delays are often unavoidable in real situ- 

ations, which may lead to oscillation and instability of neural net- 

works. Several typical examples of delayed CGNNs can be found 

in chemical processes, population dynamics and even aircraft sys- 

tems. Therefore, the dynamical behaviors of CGNNs with time de- 

lays have been paid much considerable attention and many in- 
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teresting results have been proposed, see [11–16] and references 

therein. 

It is worth pointing out that the majority of the existing litera- 

ture concentrate on the neural networks with only first derivative 

of the states, while the influence made by the inertia item is often 

ignored. The introduction of the inertia item can be regarded as 

a powerful tool to generate complicated bifurcation behavior and 

chaos in a networked system. For example, Li et al. [17] observed 

an obvious chaotic behavior by adding the inertia term to a de- 

layed differential equation; the authors in [18] added the inertia 

term to the Hopfield effective-neuron system and also found chaos 

phenomenon; Babcock and Westervelt [19] pointed out that the 

dynamics could be complex when the neuron couplings included 

an inertial nature. Recently, some research results about dynamic 

behaviors of inertial neural networks have come out. For instance, 

Cao and Wan [20] adopted the matrix measure strategies to in- 

vestigate the stability of inertial BAM neural network; the pinning 

synchronization problem of coupled inertial delayed neural net- 

work was investigated in [21] ; Tu et al. [22] studied the global 

exponential stability for inertial neural networks. In addition, some 

global exponential stability conditions for inertial CGNNs with time 

delays were proposed in [23,24] . 

On the other hand, systems with Markovian jumping parame- 

ters have been widely utilized to model a number of practical sys- 

tems where they may undergo abrupt changes in their structure 

and parameters. In other words, the neural networks may have 

finite modes and the modes may switch from one to another at 
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different times. The switching between different modes can be 

governed by continuous-time Markov chain. Such kind of neural 

network is of great significance and has received enough attention. 

For example, Wang et al. [25] and Zhang and Wang [26] investi- 

gated the stability of stochastic CGNNs with Markovian switching; 

Dong et al. [27] combined the effect of im pulse with Markovian 

jumping CGNNs with mixed time delays; some other interesting 

results concerning the dynamic behaviors of complex systems with 

Markovian jumping parameters could be found in [28-32] . How- 

ever, to the best of our knowledge, there have been few results 

on the stability of inertial Cohen–Grossberg neural networks with 

Markovian jumping parameters, which motivates the present re- 

search. 

Based on the above discussions, this paper is intended to inves- 

tigate the global asymptotical stability of inertial Cohen–Grossberg 

neural networks with Markovian jumping parameters. By employ- 

ing the Lyapunov functional as well as linear matrix inequal- 

ity techniques, several novel sufficient conditions are provided to 

guarantee the global asymptotical stability of the equilibrium point 

for the proposed system. Compared with the existing literature, the 

contributions of this paper are mainly displayed in three aspects: 

(i) The proposed model is quite general since many factors such as 

Markovian jumping parameters and time-varying delays are con- 

sidered. (ii) The construction of Lyapunov functional is rather spe- 

cial, where the use of delay-decomposition technique makes the 

sufficient conditions less conservative. (iii) All the obtained results 

are independent of the derivative of time-varying delays, which in- 

dicates that the restriction on the derivative of τ ( t ) is removed. 

The remainder of this paper is organized as follows. In 

Section 2 , a class of inertial Cohen–Grossberg Markovian jump- 

ing networks is formulated, and some essential assumptions and 

lemmas are introduced. Several sufficient conditions that guaran- 

tee the global asymptotical stability of the equilibrium point are 

given in Section 3 . In Section 4 , two numerical examples are pro- 

posed to verify the effectiveness of the derived results. Finally, we 

conclude this paper with several general remarks in Section 5 . 

2. Model description and preliminaries 

2.1. Model description 

Let { r ( t ), t ≥ 0} be a continuous-time Markovian process with 

right continuous trajectories and taking values in a finite set S = 

{ 1 , 2 , . . . , N} . The transition probability from mode p at time t to 

mode q at time t + �t with generator � = (πpq ) N×N is given by 

P { r(t + �t) = q | r(t) = p} = 

{
πpq �t + o(�t) , p � = q, 

1 + πpq �t + o(�t) , p = q, 

where �t > 0 and lim �t→ 0 
o(�t) 
�t 

= 0 . Here, πpq ≥ 0 is the transition 

probability rate, and satisfies πpp = −∑ N 
q =1 ,q � = p πpq . 

In this paper, the inertial Cohen–Grossberg neural networks 

with Markovian jumping parameters can be described by the fol- 

lowing differential equations: 

d 2 x i (t) 

dt 2 
= −δi 

dx i (t) 

dt 
− μi (x i (t ) , r(t )) 

[ 
h i (x i (t ) , r(t )) 

−
n ∑ 

j=1 

a i j (r(t)) g j (x j (t)) 

−
n ∑ 

j=1 

b i j (r(t)) g j (x j (t − τ (t))) + J i 

] 
, 

t ≥ 0 , i = 1 , 2 , . . . , n, (1) 

where x i ( t ) is the state variable of the i th neuron at time t , the sec- 

ond derivative of x i ( t ) is an inertial term, δi > 0 are constants, μi ( · ) 

represents an amplification function, and h i ( · ) stands for an appro- 

priately behaved function, a ij and b ij are the connection weights 

of the neural networks, the activation function g j ( · ) describes the 

manner in which the neurons respond to each other, J i stands for 

the external input on the i th neuron, and τ ( t ) denotes the time- 

varying transmission delay satisfying 0 < τ ( t ) ≤ τ . 

By introducing the following variable transformation 

y i (t) = 

dx i (t) 

dt 
+ x i (t) , i = 1 , 2 , . . . , n. 

Then, system (1) can be written as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dx i (t) 

dt 
= −x i (t) + y i (t) , 

dy i (t) 

dt 
= −(1 − δi ) x i (t) − (δi − 1) y i (t) 

−μi (x i (t ) , r(t )) 
[ 

h i (x i (t ) , r(t )) − ∑ n 
j=1 a i j (r(t)) g j (x j (t)) 

−∑ n 
j=1 b i j (r(t)) g j (x j (t − τ (t))) + J i 

] 
. 

(2) 

For the sake of simplicity, for each r(t) = p ∈ S, set 

μi (x i (t ) , r(t )) = μpi (x i (t)) , h i (x i (t ) , r(t )) = h pi (x i (t )) , a i j (r(t )) = 

a pi j , and b i j (r(t)) = b pi j . 

Then system (2) can be rewritten as ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

dx i (t) 

dt 
= −x i (t) + y i (t) , 

dy i (t) 

dt 
= −(1 − δi ) x i (t) − (δi − 1) y i (t) − μpi (x i (t)) 

[ 
h pi (x i (t)) 

−∑ n 
j=1 a pi j g j (x j (t)) − ∑ n 

j=1 b pi j g j (x j (t − τ (t))) + J i 

] 
. 

(3) 

Throughout this paper, the following assumptions are utilized. 

( H 1 ): For ∀ v 1 , v 2 ∈ R , v 1 � = v 2 , the activation functions g i ( · ) com- 

ply with the following restriction: 

0 ≤ g i (v 1 ) − g i (v 2 ) 
v 1 − v 2 

≤ l i , i = 1 , 2 , . . . , n, 

where l i > 0 are constants. Define L = diag (l 1 , l 2 , . . . , l n ) . 

( H 2 ): The amplification functions μpi ( · ) are continuous and 

bounded, satisfy 

0 < αpi ≤ μpi (·) ≤ ᾱpi . 

Besides, define 

αp = min 

1 ≤i ≤n 
( αpi ) , ᾱp = max 

1 ≤i ≤n 
( ̄αpi ) . 

( H 3 ): For i = 1 , 2 , . . . , n, there exist positive constants βpi > 0, 

β̄pi > 0 , such that the behaved functions h pi ( · ) are subjected to 

0 < β
pi 

≤ h 

′ 
pi (·) ≤ β̄pi . 

Besides, set 

β
p 

= min 

1 ≤i ≤n 
( β

pi 
) , β̄p = max 

1 ≤i ≤n 
( ̄βpi ) . 

It is well known that the bounded activation functions always 

guarantee the existence of an equilibrium ( x ∗, y ∗) T for system (3) . 

For convenience, we shift the equilibrium point to the origin by 

transformation 

u i (t) = x i (t) − x ∗i , v i (t) = y i (t) − y ∗i . 

Then system (3) can be transformed into the following form: 
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