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a b s t r a c t 

Many problems in computer vision and pattern recognition can be posed as learning low-dimensional 

subspace structures from high-dimensional data. Subspace clustering represents a commonly utilized sub- 

space learning strategy. The existing subspace clustering models mainly adopt a deterministic loss func- 

tion to describe a certain noise type between an observed data matrix and its self-expressed form. How- 

ever, the noises embedded in practical high-dimensional data are generally non-Gaussian and have much 

more complex structures. To address this issue, this paper proposes a robust subspace clustering model 

by embedding the Mixture of Gaussians (MoG) noise modeling strategy into the low-rank representation 

(LRR) subspace clustering model. The proposed MoG-LRR model is capitalized on its adapting to a wider 

range of noise distributions beyond current methods due to the universal approximation capability of 

MoG. Additionally, a penalized likelihood method is encoded into this model to facilitate selecting the 

number of mixture components automatically. A modified Expectation Maximization (EM) algorithm is 

also designed to infer the parameters involved in the proposed PMoG-LRR model. The superiority of our 

method is demonstrated by extensive experiments on face clustering and motion segmentation datasets. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

With dramatic development of techniques on data collection 

and feature extraction in recent years, the data obtained from 

real applications are often with high dimensionality. Such high- 

dimensional characteristic of data not only tends to bring large 

computation burden to the later data processing implementation, 

but also might possibly degenerates the performance of the uti- 

lized data process technique due to the curse of dimensionality is- 

sue. 

An effective strategy to alleviate this problem is to find the 

intrinsic low-dimensional subspace where such high-dimensional 

data intrinsically reside, and then make implementations on the 

low-dimensional projections of data. This is always feasible in real 

scenarios since features of practically collected data are generally 

with evident correlations. Such a “subspace learning” methodology 

has attracted much attention in the past decades and various re- 

lated methods have been proposed for different machine learning, 

computer vision and pattern recognition tasks [1–3] . 

∗ Corresponding author. 

E-mail addresses: jasonyao92@gmail.com (J. Yao), caoxiangyong45@gmail.com 

(X. Cao), timmy.zhaoqian@mail.xjtu.edu.cn , timmy.zhaoqian@gmail.com (Q. Zhao), 

dymeng@mail.xjtu.edu.cn (D. Meng), zbxu@mail.xjtu.edu.cn (Z. Xu). 
1 1 indicates equal contribution 

In the recent years, a new trend on subspace learning, called 

subspace clustering, has appeared by simultaneously clustering 

data and extracting multiple subspaces, each corresponding to one 

data cluster [4–6] . Compared with traditional methods which as- 

sume data lie on a unique low-dimensional subspace, such “sub- 

space clustering” model better complies with many real scenar- 

ios where data are located on multiple subspace clusters. Typical 

applications include face clustering [7] , image segmentation [8] , 

metric learning [9] , feature grouping [10] and image representa- 

tion [11] . Accordingly this research has been attracting increasing 

attention in the recent years. 

Now let’s introduce the formal definition for the subspace clus- 

tering problem as below [4] : 

Definition 1.1 (Subspace Clustering) . Given a set of sampled data 

X = [ X 1 , . . . , X k ] = [ x 1 , x 2 , . . . , x n ] ∈ R 

d×n drawn from a union of k 

subspaces {S i } k i =1 
, where X i denotes a collection of n i samples 

drawn from the subspace S i , and n = 

∑ k 
i =1 n i . The task of subspace 

clustering is to cluster the samples according to the underlying 

subspaces they are drawn from. 

The main assumption underlying the subspace clustering is that 

each datum is sampled from one of several low-dimensional sub- 

spaces, and hence can be well represented as a linear combina- 

tion of the other data from the same subspace. The representa- 

tion matrix composed of all coefficients of such combinations is 
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firstly taken as the encoding representation for the intrinsic sub- 

space clusters and then is utilized to extract subspace knowledge 

from data. This subspace learning task is mathematically formu- 

lated as follows: 

min 

C 
R (C ) + λL (X − ˜ X C ) , (1) 

where ˜ X is a predefined dictionary, the first term regularize the 

representation matrix C to encode the subspace clustering prior 

knowledge in it, the second term is the loss function to fit the ad- 

ditive noise and λ is a positive trade-off parameter. 

A natural choice for the loss function L (·) in Eq. (1) is the ‖ · ‖ F 
norm, which, from the probabilistic perspective, mainly character- 

ize Gaussian noise. However, real noises in applications are gen- 

erally non-Gaussian, and thus other types of loss functions were 

considered, such as ‖ · ‖ 1 norm and ‖ · ‖ 2, 1 norm 

2 , correspond- 

ing to Laplacian noise and sample specific Gaussian noise, respec- 

tively [12] . These noise assumptions, however, still have limita- 

tions, since data noise in practical applications often exhibits much 

more complex statistical structures [13–16] . Therefore, a pre-fixed 

simple loss term is generally incapable of well fitting practical 

noise in data. The clustering accuracy of the utilized subspace clus- 

tering method [6] thus tends to be negatively influenced by this 

improper assumption. In this sense, it’s crucial to propose a robust 

subspace clustering model to tackle complex noise. 

To address this issue, this paper presents a novel subspace clus- 

tering method that is robust against a wider range of noise dis- 

tributions beyond traditional Gaussian, Laplacian or sample Gaus- 

sian noises. Our basic idea is to encode data noise as Mixture of 

Gaussians (MoG) in the subspace clustering model, and simulta- 

neously extract subspace cluster knowledge and adapt data noise. 

Here we prefer to employ MoG as the noise model due to its uni- 

versal approximation property to any continuous distribution [17] . 

Such idea is inspired by some recent noise modeling method- 

ology designed on some typical machine learning and computer 

vision tasks, such as low-rank matrix factorization (LRMF) [18] , 

robust principle component analysis (RPCA) [19] and tensor factor- 

ization [20] , and has been substantiated to be effective in the com- 

plicated noise scenarios. There exist multiple subspace clustering 

approaches recently, such as Sparse Subspace Clustering (SSC) [5] , 

Low-Rank Representative (LRR) [6] and Least Square Regression 

(LSR) [21] . In this work we readily adopt the LRR model [6,22] due 

to its utilization of clean data as the dictionary matrix, instead of 

taking original corrupted ones as most others, which better com- 

plies with the insight of subspace clustering. In addition, regard- 

ing the automatic selection of mixture Gaussian components, we 

propose a penalized MoG-LRR model through adopting a penalized 

likelihood technique inspired by [23,24] . We further design an ef- 

fective Expectation Maximization (EM) algorithm to infer all pa- 

rameters involved in this model. The superiority of the proposed 

method is substantiated on face clustering and motion segmenta- 

tion problems as compared with the current state-of-the-art meth- 

ods on subspace clustering. 

Specifically, the contribution of this work can be summarized 

as follows: 

• On subspace clustering, we integrated MoG noise modeling 

methodology into the LRR model, which enhances a robust sub- 

space clustering strategy with capability of adaptively fitting a 

wide range of data noises beyond current methods. 

• On MoG noise modeling methodology, through employing the 

penalized likelihood technique, the EM algorithm designed on 

the proposed MoG-LRR model is capable of automatically se- 

lecting a proper Gaussian mixture component number as well 

2 The three norms are calculated as ‖ · ‖ F = 

∑ N 
j=1 ( 

∑ D 
i =1 (·) 2 i j 

) , ‖ · ‖ 1 = ∑ N 
j=1 ( 

∑ D 
i =1 | (·) i j | ) and ‖ · ‖ 2 , 1 = 

∑ N 
j=1 ( 

∑ D 
i =1 (·) 2 i j 

) 
1 
2 , respectively. 

Table 1 

Some utilized notations in this paper. 

Notation Definition 

k Number of subspaces 

N Data size 

D Data dimensionality 

X = [ x 1 , . . . , x N ] Observed data 

A = [ a 1 , . . . , a N ] Clean data 

C = [ c 1 , . . . , c N ] Representation matrix 

E = [ e 1 , . . . , e N ] Sample-wise noise 

π = { π1 , . . . , πK } Mixture proportions 

� = { �1 , . . . , �K } Covariance matrices 

as other involved parameters in this model. This also prompts 

the frontier of noise modeling and makes it easy for the selec- 

tion of this important parameter. 

Our paper is organized as follows. Related work is introduced in 

Section 2 . Section 3 proposes our model called Penalized Mixture of 

Gaussians Low-Rank Representation (PMoG-LRR) and then presents 

a modified EM algorithm for solving this model. Section 4 presents 

experimental results implemented on synthetic and real data sets 

to substantiate the superiority of our proposed method over other 

state-of-the-arts. Finally, a brief conclusion is drawn in Section 5 . 

Throughout the paper, we denote scalars, vectors, matrices as the 

non-bold, bold lower case and bold upper case letters, respectively. 

Some notations used in this paper are summarized in Table 1 . 

2. Related work 

The past two decades has witnessed a rapid development in the 

field of subspace clustering. The related methods can be roughly 

classified into four categories: algebraic methods, iterative meth- 

ods, statistical methods, and spectral-clustering-based methods [4] . 

Algebraic methods, typically represented by Matrix 

Factorization-based methods [25–27] , first find a permutation 

matrix and calculate the multiplication matrix of data and the 

permutation matrix, and then factorize this multiplication matrix 

into two rank- r matrices, a base-matrix and a block diagonal 

matrix, respectively. But these methods are generally sensitive to 

noise and require the knowledge of the rank r of data matrix. The 

iterative methods, e.g., K-subspaces [28] use an iterative way to 

model and segment data. Specifically, such methods first assign 

data to pre-defined multiple subspaces, and then update the 

subspaces and reassign each data point to the closest subspace. 

The drawback of above two methods is that they incline to be 

sensitive to initialization and outliers. Besides, they need to know 

the number of subspace and their corresponding dimensions in 

advance. The statistical methods, e.g., Mixtures of Probabilistic 

PCA (MPPCA) [29] , assume that the sample data are generated 

from a Mixture of Gaussians (MoG) distribution and then uses 

the Expectation Maximization (EM) algorithm to update the data 

segmentation and model parameters alternatively under the Maxi- 

mum Likelihood Estimation (MLE) framework. One disadvantage of 

these methods is that the model always cannot fit the cases that 

the intrinsic distributions of the data inside each subspace are not 

Gaussian. 

Recently, spectral-clustering-based subspace clustering methods 

has been attracting more attention [5,6,21] due to its rational 

methodology and successful performance in applications [30] . The 

fundament of these methods is to assume that each data point 

can be linearly represented by all the other data points from the 

same subspace cluster. These methods generally contain two steps. 

Firstly, an affinity matrix is built to capture the similarity between 

pairs of data points. Then, the segmentation of data is obtained by 

applying spectral clustering algorithm [31] to the affinity matrix. 
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