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a b s t r a c t 

Learning rich representations efficiently plays an important role in the multi-modal recognition task, 

which is crucial to achieving high generalization performance. To address this problem, in this paper, 

we propose an effective Multi-Modal Local Receptive Field Extreme Learning Machine (MM-LRF-ELM) 

structure, while maintaining ELM’s advantages of training efficiency. In this structure, LRF-ELM is first 

conducted for feature extraction for each modality separately. And then, the shared layer is developed 

by combining these features from each modality. Finally, the Extreme Learning Machine (ELM) is used 

as supervised feature classifier for the final decision. Experimental validation on Washington RGB-D Ob- 

ject Dataset illustrates that the proposed multiple modality fusion method achieves better recognition 

performance. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Object recognition is a challenging task in computer vision and 

important for making robots useful in home environments. With 

the recent advent of depth cameras, an increasing amount of vi- 

sual data not only contains color but also depth measurements. 

Compared to RGB data, which provides information about appear- 

ance and texture, depth data contains additional information about 

object shape and it is invariant to lighting or color variations [1] . 

In recent years, various approaches that have been proposed 

for RGB-D object recognition: methods with hand-crafted features 

[2–4] , and methods with learned feature [5–10] . Moreover, the 

classical neural network structure, like convolutional neural net- 

work networks (CNNs), is also applied to the object recognition 

field [24–26] and it have recently been shown to be remarkably 

successful for recognition on RGB images [23] . 

Though traditional gradient-based learning algorithms (like BP 

Neural network) [11] have been widely used in the training of mul- 

tilayer feedforward neural networks [21,22] , these gradient-based 

learning algorithms are still relatively slow in learning and easily 

get stuck in local minima [13] . Furthermore, the activation func- 

tions used in these gradient-based tuning methods need to be dif- 

ferentiable. 

In order to overcome the drawbacks of gradient-based meth- 

ods, Huang et al. proposed an efficient training algorithm for the 
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single-hidden layer feedforward neural network (SLFN) called Ex- 

treme Learning Machine (ELM) [12,14] . It increases the learning 

speed by means of randomly generating input weights and hidden 

biases, and the output weights are determined by using Moore–

Penrose (MP) generalized inverse. Compared with the traditional 

gradient-based learning algorithms, ELM not only learns much 

faster with higher generalization performance [27,30] but also 

avoids many difficulties faced by gradient-based learning meth- 

ods such as stopping criteria, learning rate, learning epochs, and 

local minima. What is more, more and more deep ELM learning 

algorithms has been proposed [33,34] to capture relevant higher- 

level abstractions. However, ELM with local connections has not 

attracted much research attention yet. Ref. [15] has proved that 

the application of the local receptive fields based ELM (LRF-ELM) 

has better performance than conventional deep learning solutions 

[16,31,32] in image processing and speech recognition. 

However, the aforementioned works do not refer to the multi- 

modal problem [28,29] . Thus, in this paper, we extend the LRF- 

ELM and propose a Multi-Modal LRF-ELM (MM-LRF-ELM) frame- 

work. The proposed MM-LRF-ELM is applied to multi-modal learn- 

ing task, while maintaining its advantages of training efficiency. 

The contributions of this work are summarized as follows: 

1. We propose an architecture: multi-modal LRF-ELM framework, 

to construct the nonlinear representation from different aspects 

of information sources. The important merit of such a method 

is that the training time is greatly shortened and the testing 

efficiency is highly improved. 
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Fig. 1. The model of basic ELM. 

2. We evaluate our multimodal network architecture on the 

Washington RGB-D Object Dataset [4] . The obtained results 

show that the proposed fusion method obtains rather promis- 

ing results. 

The remainder of this paper is organized as follows: 

Section 2 introduces the related works, including the fundamental 

concepts and theories of ELM; Section 3 describes the proposed 

MM-LRF-ELM framework; Section 4 compares the performance 

of MM-LRF-ELM with single modality and other methods; while 

Section 5 concludes this paper. 

2. Brief review for ELM 

ELM was proposed in Huang et al. [12] ( Fig. 1 ). Suppose we are 

training SLFNs with K hidden neurons and activation function g(x) 

to learn N distinct samples { X , T } = { X j , t j } N j=1 
, where x j ∈ R 

n and 

t j ∈ R 

m . In ELM, the input weights and hidden biases are randomly 

generated instead of tuned. By doing so, the nonlinear system has 

been converted to a linear system 

Y j = 

L ∑ 

i =1 

βi g i ( x j ) = 

L ∑ 

i =1 

βi g( w 

T 
i x j + b i ) = t j , j = 1 , 2 , ...N (1) 

where Y j ∈ R 

m is the output vector of the j th training sample, 

W i ∈ R 

n is the input weight vector connecting the input nodes to 

the i th hidden node, b i denotes the bias of the i th hidden neu- 

ron; βi = (βi 1 , βi 2 , ..., βim 

) T denotes the weight vector connecting 

the i th hidden neuron and output neurons; g ( · ) denotes hidden 

nodes nonlinear piecewise continuous activation functions. The 

above N equations can be written compactly as: 

H β = T (2) 

where the matrix T is target matrix, 

H = 

⎡ 

⎣ 

g( w 

T 
1 x 1 + b 1 ) · · · g( w 

T 
L x 1 + b L ) 

. . . · · ·
. . . 

g( w 

T 
1 x N + b 1 ) · · · g( w 

T 
L x N + b L ) 

⎤ 

⎦ (3) 

β = 

⎡ 

⎣ 

βT 
1 

. . . 

βT 
L 

⎤ 

⎦ , T = 

⎡ 

⎣ 

t T 1 
. . . 

t T N 

⎤ 

⎦ (4) 

Thus, the determination of the output weights (linking the hid- 

den layer to the output layer) is as simple as finding the least- 

square solution to the given linear system. The minimum norm 

least-square (LS) solution to the linear system (1) is 

ˆ β = H 

† T (5) 

where H † is the MP generalized inverse of matrix H . As analyzed 

by Huang, et al., ELM using such MP inverse method tends to ob- 

tain good generalization performance with dramatically increased 

learning speed. 

3. Multi-modal LRF-ELM 

3.1. Model architecture 

Our architecture, which is depicted in Fig. 2 , employs the LRF- 

ELM as the learning unit to learn shallow and deep informa- 

tion. The multi-modal training architecture is structurally divided 

into three separate phases: unsupervised feature representation for 

each modality separately, feature fusion representation and super- 

vised feature classification. 

As shown in Fig. 2 , we perform feature learning to have rep- 

resentations of each modality (RGB and Depth) before they are 

mixed. Each modality is given to a single LRF-ELM net layer which 

provides useful translational invariance of low-level features such 

as edges and allows parts of an object to be deformable to some 

extent. 

Mathematically, the output of each modality can be separately 

calculated. where H 

c 
1 , H 

d 
2 ∈ N × K · (d − r + 1) 2 , the parameter N is 

the input samples, K is the number of feature maps , d is the input 

size and r is the size of the receptive field. H 

c 
1 , H 

d 
2 are the pooling 

layer feature matrixes representing non-linear representations ex- 

tracted from features of each modality, where c denotes the LRF- 

ELM I, which extracts the feature of the RGB image and d denotes 

the LRF-ELM II, which extracts the feature of the Depth image. In 

our work, each LRF-ELM net layer has the same parameters. 

A single LRF-ELM net layer extracts low level features from 

RGB and depth images respectively. Both representations are given 

as input to another LRF-ELM layer, the combination process is as 

follows: 

H = 

[
H 

c 
1 ; H 

d 
2 

]T 
(6) 

Finally, the original ELM is performed to make a final decision 

based on the joint representation ( Fig. 3 ). Through the proposed 

approach, multi-modal system can be developed as one whole sys- 

tem rather than being developed as separate expert systems for 

each modality. 

3.2. Unsupervised feature representation 

In this work, we adopt the local receptive fields based on ELM 

(LRF-ELM) to extract the features. In LRF-ELM, the links between 

input and hidden layer nodes are sparse and bounded by corre- 

sponding receptive fields, which are be sampled from any continu- 

ous probability distribution [15] . Fig. 4 illustrates that the process 

of learning representation from the features of each modality. The 

LRF-ELM consists of two basic operations: 

(1) Generate the initial weight matrix ˆ A 

c 

init , 
ˆ A 

d 

init randomly. With 

the input size d × d and the receptive field r × r , the size of the 

feature map should be (d − r + 1) × (d − r + 1) . 

ˆ a 
c 
k , ̂  a 

d 
k ∈ R 

r 2 

ˆ A 

c 

init , ̂
 A 

d 

init ∈ R 

r 2 ×k , k = 1 , 2 , 3 ...K 

(7) 

then, orthogonalize the initial weight matrix ˆ A 

c 

init , ̂
 A 

d 

init ,using sin- 

gular value decomposition (SVD) method. 
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