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a b s t r a c t 

Being motivated by combining the advantages of hyperplane-based pattern analysis and fuzzy clustering 

techniques, we present in this paper a fuzzy mix-prototype (FMP) clustering for microarray data analy- 

sis. By integrating spherical and hyper-planar cluster prototypes, the FMP is capable of capturing latent 

data models with both spherical and non-spherical geometric structures. Our contributions of the pa- 

per can be summarized into three folds: first, the objective function of the FMP is formulated. Second, 

an iterative solution which minimizes the objective function under given constraints is derived. Third, the 

effectiveness of the proposed FMP is demonstrated through experiments on yeast and leukemia data sets. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Despite the fact that the fuzzy c -means (FCM) algorithm has 

been applied in different areas successfully, it has been known that 

the FCM may perform well only when the data set is of spher- 

ical or hyperspherical structure. However, in real world applica- 

tions, there may be many other different types of data structures 

in which most of the current clustering algorithms may fail to 

perform well [1] , for instance, linear or hyperplane shaped data 

clusters. Some techniques are good at linear or non-linear cluster 

structures detection, i.e., graph-theoretic methods, but there are no 

explicit prototypes for the clusters, hence it is difficult to further 

explain the clustering results and perform classification. Further- 

more, in some certain research areas, such as image processing 

and computer vision, clustering algorithms need to consider not 

only the cluster prototypes but also the geometry of clusters to 

perform structure segmentation. Last but not least, data samples 

in real world applications often overlap with each other, i.e., mi- 

croarray gene expression data [2–4] . For any clustering algorithms, 

how to take both properties of overlapping and the linear subspace 

structure of the data samples into consideration is worth investi- 

gation. 

Since the proposal of support vector machines (SVMs), 

hyperplanes-based pattern analysis is attracting more and more 

attention from research community as a result of that the tech- 
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nique provides researchers with great power to handle many dif- 

ferent pattern classification problems [5–8] . As one of the most 

successful classification methods, the SVMs aim to find an op- 

timal separating hyperplane between two different categories of 

data to perform data classification. Through taking advantage of 

the kernel trick method, the SVMs are capable of differentiating 

linearly inseparable data set. The technique is famous for their ex- 

cellent performance in pattern classification and have been used 

widely and successfully. Nevertheless, the SVMs are also known 

for their computation cost during their training process. Estima- 

tion of an optimal separating hyperplane is achieved by solving a 

quadratic programming problem which involves kernel matrix in- 

vertion. The training process of SVMs is of complexity on the or- 

der of O ( n 3 ), where n is the number of samples in the training set. 

Recently, many effort s have been devoted to relieve the compu- 

tational burden of the SVMs while withholding the classification 

accuracy through adopting the hyperplanes-based approximation 

[9–14] . Being different from the original SVMs, hyperplanes in 

these works are adopted to approximate different types of data 

rather than to split them from each other. The optimal hyperplane 

minimizes the sum of squared Euclidean distances from one clus- 

ter and maximize the sum of squared Euclidean distances from the 

other cluster. The objective functions are in the form of Rayleigh 

quotient and the solution can be achieved by generalized eigen- 

value decomposition. By this means, the efficiency of these algo- 

rithms and the accuracy of classification were reported. 

For unsupervised pattern recognition techniques, hyperplane- 

based clustering algorithms are also attracting research attention 
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widely. A k -planes clustering technique was put forward in [15] , 

where hyperplanes were adopted to represent cluster centers. 

The objective of the clustering is to minimize the sum of the 

squared Euclidean distances between data and their projections 

on their representative hyperplane. The k -planes clustering algo- 

rithm iteratively updates the partition matrix and clustering hy- 

perplanes until convergence reached. The k -bottleneck hyperplane 

clustering ( k -bHPC), which is another hyperplane-based clustering 

technique, was put forward in [6] . The objective function of k -bHPC 

is the minimum of maximum distance from the data samples to 

their belonging hyperplane. The clustering algorithm aims to find 

a group of hyperplanes and a partition matrix which can minimize 

the given objective function. 

There are also some other related works have been put for- 

ward recently [16–24] . An extreme learning machine (ELM)-based 

method for heat load prediction in district heating system was pre- 

sented in [19] . Nine different ELM predictive models were devel- 

oped for time horizon from 1 to 24 h ahead. Experiments results 

were compared with that of genetic programming (GP) and artifi- 

cial neural networks (ANNs) models. Improvements in predictive 

accuracy and capability of generalization were demonstrated. In 

[18] , an Expert Multi Agent System (E-MAS) based support vec- 

tor regression (SVR) was proposed to determine collar dimensions 

around bridge pier. In [20] , a fuzzy clustering approach based on 

fuzzy distance measurement was presented, and multi-objective 

mathematical programming was then adopted for further opti- 

mization. In [17] , a novel density-based fuzzy clustering algorithm 

based on Active Learning Method (ALM) was presented. In [21] , a 

collaborative clustering framework which combines fuzzy c -means 

(FCM) and mixture mode was presented for mixed data which con- 

tains both numerical and categorical attributes. 

Being motivated by the useful concepts of combining 

hyperplane-based data proximation with fuzzy clustering tech- 

niques, we presented herein a fuzzy mix-prototype clustering 

technique in which hyperplanes and hyperspheres are used to 

form cluster prototypes. The objective function of the proposed 

clustering technique is the sum of the distances from all of the 

data points to the clustering hyperplanes, weighted by the degree 

of the point belonging to the corresponding clusters, and penalized 

by distances of data samples to cluster mass centers. The proposed 

fuzzy mix-prototype clustering aims to find a solution to minimize 

the fuzzy objective function under given constraints. The clustering 

problem can then be considered as a constrained optimization 

problem and an iterative solution can then be obtained by using 

the Lagrangian multiplier method. The solutions are the resulting 

clusters that minimize the objective function. 

The rest of the paper is organized as the follows. Section 2 gives 

a summary of some related works. Section 3 describes the pro- 

posed fuzzy mix-prototype clustering in detail, including formula- 

tion of the fuzzy objective function, derivation of an solution and 

description of the resulting algorithm. In Section 4 , we report the 

experimental results of the proposed method and compare these 

results with those obtained from some existing methods. Conclud- 

ing remarks of the proposed approach are addressed in Section 5 . 

2. Related work 

Some methods which are closely related to the proposed fuzzy 

mix-prototype clustering are briefly discussed in the following sub- 

sections. 

2.1. Fuzzy c -means clustering 

Fuzzy c -means clustering is a kind of soft clustering which al- 

lows a data point to belong to more than one cluster [1] . The 

membership u ij is an continuous value which denotes the degree 

of data point x i belong to cluster j , and it is the entry of i th row 

and j th column of membership matrix U . 

FCM uses Euclidean distance to represent the dissimilarity be- 

tween vectors and the algorithm is derived according to minimiza- 

tion of the following objective function: 

J FCM 

= 

n ∑ 

i =1 

c ∑ 

j=1 

(u i j ) 
m || x i − v j || 2 2 (1) 

where m ∈ [1 , + ∞ ) denotes the fuzziness degree, n and c denote 

the number of vectors and cluster centers respectively, v j denotes 

the j th cluster center, and || x || 2 
2 

represents the squared norm 2 of 

vector x . 

The minimization of J FCM 

subjects to the following constraints: 

u i j ∈ [0 , 1] , i = 1 , ..., n, j = 1 , ..., c (2) 

c ∑ 

j=1 

u i j = 1 (3) 

0 < 

n ∑ 

i =1 

u i j < n, j = 1 , ..., c (4) 

By using the Lagrangian multiplier method, necessary condi- 

tions for minimizing J FCM 

under the given constraints can be de- 

rived and the cluster centers and partition matrix can be updated 

according to 

v j = 

n ∑ 

i =1 

(u i j ) 
m x i / 

n ∑ 

i =1 

(u i j ) 
m (5) 

u i j = 

c ∑ 

k =1 

( || x i − v j || 2 2 

|| x i − v k || 2 2 

) 1 
1 −m 

(6) 

And the algorithm is summarized as 

1. Randomly initialize the membership u i j , i = 1 , ..., n ; j = 1 , ..., c; 

2. Given termination criterion ε ∈ (0, 1); 

3. Set t = 0 , iterate: 

(a) update cluster center according to Eq. (5); 

(b) compute || x i − v j || ; 
(c) update membership u ij according to Eq. (6) ; 

(d) if || U 

(t+1) − U 

(t) || < ε then stop, otherwise continue, 

where the fuzzy weighting exponent m is usually chosen as 2. 

2.2. Kernel FCM 

Kernel FCM (KFCM) is a variant of FCM which extends fuzzy 

clustering into kernel space [25] . The clustering method makes 

use of kernel transformations to map vectors from the original p - 

dimensional feature space to a kernel space which is of higher 

dimensionality. Through this mapping, problems that are linearly 

non-separable in the original feature space become linearly sepa- 

rable in the kernel space, and then fuzzy clustering algorithms can 

be used to perform data analysis. 

Kernel FCM takes advantage of the ‘kernel trick’ to perform data 

analysis. The ‘kernel trick’ is achieved by using a continuous, sym- 

metric, positive semi-definite function which is known as ‘kernel 

function’. By using this kernel function, the inner product between 

two vectors in the kernel space can be directly computed, without 

knowing the explicit form of the vectors in the kernel space. 

For example, kernel function K( x,y ) where 

K( x,y ) = φ( x ) T φ( y ) , (7) 

represents the inner product between two vectors x , y in the ker- 

nel space, and x , y ∈ R 

p are p -dimension vectors, function φ( x ) 
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