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a b s t r a c t 

An algorithm that generates an exponential number of stable states for the very well-known Hopfield 

Neural Network (HNN) is introduced in this paper. We show that the quantity of stable states depends 

on the dimension and number of components of the input pattern supporting noise. Extensive tests verify 

that the states generated by our algorithm are stable states and show the exponential storage capacity of 

a HNN. This paper opens the possibility of designing improved HNNs able to achieve exponential storage, 

and thus find their applicability in complex real-world problems. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Since several decades several brain models have been devel- 

oped trying to describe short and long term memory nature, based 

on the fact that memory is the result of synaptic modification that 

depends on the correlation between presynaptic and postsynap- 

tic firings. Through artificial neural networks, scientists are able 

to mimic certain behaviors of the human brain. One of the most 

important topics is related with the question of how the brain ac- 

quires and maintains new information, process known as learning 

and memory. An associative memory has the capacity to recall a 

stored pattern from a reasonable sub-set of its information. An as- 

sociative memory is also known to function as an error corrector 

in the sense that it can eliminate inconsistent information of the 

signal that it represents. An associative memory is a dynamic in- 

formation system composed of a set of stable states acting as at- 

tracting basins through which neighboring states evolve in time. 

This temporal evolution of a set of neuronal elements though an 

equilibrium point can be interpreted as the evolution of an imper- 

fect pattern through a correct (stored) pattern. This way, associa- 

tion and information recall is simulated by the dynamic behavior 

of a non-linear system. The Hopfield associative memory model is 

known to exhibit these characteristics. 

Hopfield Neural Networks (HNN) are an important class of re- 

current neural networks. They have been extensively studied dur- 
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ing decades. HNN have been applied in different areas such as 

problem optimization, pattern classification, signal processing, im- 

age segmentation and associative memories [1–6] . 

Despite huge effort s, the great majority of research papers still 

perform tests on artificial patterns without an application on a 

real-world problem [7–10] . 

The dynamic behavior of different classes of HNN has been a 

topic of great interest to many researchers having been extensively 

investigated. The high-order HNNs have attracted the attention of 

many authors due to the fact that high-order neural networks 

present stronger properties than low-order neural networks. Sta- 

bility and dissipativity are two issues that arise from the dynami- 

cal behavior of high-order neural networks. In [11] new criteria for 

ensuring the existence and global exponential stability of almost 

periodic solution for delayed high-order Hopfield Neural Network 

were obtained. Duan et al. [12] studied the problem of robust dissi- 

pativity for a class of recurrent neural networks with time-varying 

delay and discontinuous activations showing that the dissipativity 

is important because it can generalize the idea of a Lyapunov func- 

tion. 

Among the important research topics the following can be men- 

tioned: the problem of stability [13–17] , storage capacity [18–

23] , equilibrium points (stable states) [24] . For example, in [7] , a 

method for the design of a HNN is developed, by which a given 

set of patterns can be assigned as locally asymptotically network 

equilibria. Li et al. [25] have shown that a class of neural networks 

relatively close to the Hopfield model has at most 2 n asymptoti- 

cally stable equilibrium points. This research shows the possibility 
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Fig. 1. Typical architecture of the Hopfield Neural Network. 

of reaching exponentially storage capacity; although the results 

were obtained under a set of assumptions. 

In practice if we store a set of patterns in a HNN, it is very dif- 

ficult to ensure if the HNN will converge to stable state that cor- 

responds to the stored pattern, in this sense no article has been 

published telling the reader which set of points of the state space 

behave as stable states and which allow maximum retrieval capac- 

ity in the presence of noise. 

2. Hopfield model: basics, training and retrieval 

The discrete version of the HNN consists of n fully connected 

neurons as depicted in Fig. 1 . Each neuron in a HNN has two states 

determined by the level of the induced local field acting on it. The 

“on” state of neuron i is denoted as x i = +1 , and the “off” state 

is represented by x i = −1 . These values represent the two neuron 

possible states, a state of inhibition ( −1) or a state of activation 

(+1) as in McCulloch and Pitts neuron [26] . In a HNN the connec- 

tion strength is described by a n × n matrix; this matrix is called 

weight matrix. Each neuron also has a threshold. Each weight ma- 

trix defines a HNN in its discrete version. From a structural point 

of view, the general model of the HNN is fully connected and con- 

tains positive and negative feedback information. 

For a network made up of such n neurons, a state of the net- 

work is defined by the vector: 

x = [ x 1 , x 2 , . . . , x n ] (1) 

The induced local field v j of neuron j is defined by 

v j = 

n ∑ 

i =1 

w ji x i + b j, (2) 

where b j is a fixed bias applied externally to neuron j and w ij rep- 

resents the synaptic weight from neuron i to neuron j . We refer to 

W as n × n synaptic HNN weight matrix. In a normal operation W 

satisfies two conditions: (1) w ii = 0 for all i , and (2) W 

T = W . 

Neuron j modifies its state x j , according to the following rule: 

x j = 

{
−1 if v j < 0 

+1 if v j > 0 

(3) 

Conveniently, if v j = 0 , then neuron j must remain in its previous 

state, regardless whether it is on or off. Equivalently: 

x j = sgn (v j ) , (4) 

where sgn is the signum function [27] . 

A discrete HNN operates in two phases: one of storage and one 

of retrieval, both phases are briefly described next. 

2.1. Storage phase 

During this phase we are given a set of M patterns to be mem- 

orized in a HNN. Each pattern is represented by an n -dimensional 

vector. These vectors called fundamental memories are denoted 

by { x a : a = 1 , 2 , . . . , M} . Let x a, i denote the i th component of the 

fundamental memory x a . According to generalized Hebb’s learning 

rule, the synaptic weight from neuron i to neuron j is defined by 

w ji = 

1 

n 

M ∑ 

a =1 

x a, j x a,i (5) 

Also, we can write synaptic weight matrix W = w i j in matrix form 

as follows: 

W = 

1 

n 

M ∑ 

a =1 

x a x 

T 
a − M I (6) 

In this case x a x 
T 
a represents the outer product of the vector x a with 

itself and I is the identity matrix. 

As stated in [27] : (1) The output of each neuron in the network 

is fed back to all other neurons, (2) there is no self-feedback in the 

network (i.e., w ii = 0 ), and (3) the weight matrix of the network is 

symmetric (i.e., W = W 

T ). 

2.2. Retrieval phase 

During this phase, a n -dimensional vector x probe , called probe, 

with elements equal to +1 are imposed to the HNN. Typically, 

this input pattern is a noisy version of one of the M fundamental 

memories: { x a : a = 1 , 2 , . . . , M} . Pattern retrieval proceeds in ac- 

cordance with a dynamic rule, applied over each network neuron 

at some fixed rate. This dynamic rule has two stages as follows: 

1. Initialization. At t = 0 , make x (t) = x probe . 

2. Iteration until convergence. Update each component of the state 

vector according to 

x j (t + 1) = 

{ −1 if 
∑ n 

i =1 w ji x i (t) < 0 

x j (t) if 
∑ n 

i =1 w ji x i (t) = 0 

+1 if 
∑ n 

i =1 w ji x i (t) > 0 

Repeat this process until the state vector x remains unchanged, 

that is until x j (t + 1) = x j (t) for all j = 1 , 2 , . . . , n . 

3. Output state. At the end, finally the network produces a time- 

invariant state vector y . This vector y that satisfies the stability 

condition is called a stable state. 

It is possible that during retrieval phase the HNN converges to 

stable state that does not correspond to the stored pattern. This 

state is called spurious state. 
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