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a b s t r a c t 

This paper investigates the globally asymptotic synchronization for hybrid neural networks with ran- 

dom coupling strengths and mixed time-delays in the mean square. By employing a novel augmented 

Lyapunov–Krasovskii functional (LKF), applying the theory of Kronecker product of matrices, Barbalat’s 

Lemma and the auxiliary function-based integral inequalities, several novel delay-dependent conditions 

are established to achieve the globally stochastic synchronization for the hybrid coupled neural networks. 

Two presented criteria do not require all the symmetric matrices involved in the employed quadratic 

LKF to be positive definite. Furthermore, the conservatism of delay-dependent stability conditions can 

be reduced due to the relaxation on the positive-definiteness of some Lyapunov matrices. Finally, two 

numerical examples with simulation are provided to illustrate the effectiveness of the presented criteria. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

During the last few years, complex networks have received in- 

creasing attention from the real world such as the internet, so- 

cial networks, electrical power grids, global economic markets, and 

so on. Many interesting behaviors can be observed from com- 

plex dynamical networks, e.g., synchronization, consensus, self- 

organization, and spatiotemporal chaos spiral waves. As an impor- 

tant collective behavior of complex dynamical networks, synchro- 

nization has been widely investigated in the last two decades (see, 

for example, [30,34] ). 

As a special class of complex networks, coupled neural net- 

works have been a hot topic because they have wide applications 

in a variety of areas, such as signal processing, pattern recogni- 

tion, static image processing, associative memory, and combinato- 

rial optimization [3,11,16,25,28] . On the other hand, due to the fi- 

nite speeds of the switching and transmitting signals, time delays 

exist in neural networks. It is well known that time delays may 

result in oscillatory behaviors or network instability (periodic os- 

cillation and chaos). So far, most of the existing results related to 

the synchronization analysis for neural networks have been con- 

cerned with the discrete time-delay. The distributed time-delay 
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has received increasing research interest due to the presence of 

an amount of parallel pathways with a variety of axon sizes and 

lengths [5,14] . In [2] , based on LKF method and Kronecker product 

techniques, several synchronization criteria have been obtained for 

identical neural networks with constant and delayed coupling by 

means of linear matrix inequalities (LMIs). In [1] , by introducing 

several new free-weighting matrices and using the Jensen integral 

inequality, several LMI-based synchronization criteria have been 

established for coupled neural networks with constant coupling, 

discrete-delay coupling and distributed-delay coupling. In [15] , by 

utilizing a novel LKF and Barbalat’s Lemma, a few LMI-based syn- 

chronization criteria have been achieved for linearly coupled neu- 

ral networks with discrete and unbounded distributed time-delays. 

In [33] , by introducing several new free-weighting matrices and 

using the Jensen inequality, two LMI-based synchronization criteria 

have been acquired for neutral-type neural networks with mixed 

time delays and hybrid nonlinear coupling strengths. In [18] , by de- 

vising a new zero equality, utilizing Finsler’s lemma and the Jensen 

inequality, two LMI-based synchronization criteria have been de- 

rived for coupled neural networks with interval time-varying de- 

lays in network coupling and leakage delay. In [13] , a few LMI- 

based synchronization conditions have been proposed for identi- 

cal neutral-type Markovian coupled neural networks with mode- 

dependent discrete and unbounded distributed time delays by in- 

troducing a novel LKF and using some analytical techniques. In 

[24] , by constructing an appropriate augmented LKF, introducing 

several new free-weighting matrices and using the Jensen inequal- 

ity, an LMI-based synchronization condition has been presented for 
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nonlinear coupled static neural networks with time-varying delay. 

In [4] , by introducing several new free-weighting matrices, using 

Barbalat’s Lemma and the Jensen inequality, two LMI-based syn- 

chronization conditions have been introduced for hybrid coupled 

neural networks with leakage delay, time-varying discrete and dis- 

tributed delays. In [8] , based on Kronecker product techniques and 

the Jensen inequality, two LMI-based synchronization criteria have 

been reported for static neural networks with hybrid couplings and 

constant time delays. 

On the other hand, it is well known that coupling strength 

plays an important role while studying synchronization of com- 

plex networks. If coupling strength is sufficiently large, a complex 

network can synchronize itself or can be pinned to a desired ob- 

jective state (see [29] ). To the best of our knowledge, few pub- 

lished papers considered random coupling strength while study- 

ing dynamics of complex networks. Obviously, when the coupling 

strength varies randomly, conditions for synchronization of com- 

plex networks with constant coupling strength may be inapplica- 

ble anymore, or more conservative result would be derived if only 

the upper or lower bound of the random coupling strength is uti- 

lized. Therefore, it is urgent to investigate the synchronization of 

complex networks with random coupling strength, which moti- 

vates us to study the synchronization problem for hybrid coupled 

neural networks with time-varying discrete delay and unbounded 

distributed delays. 

As is well known, in the field of synchronization analy- 

sis, obtaining tight bounds of integral terms of quadratic func- 

tions plays a key role in reducing the conservatism. In the last 

decade, the Jensen inequality has been intensively used to ac- 

quire these bounds. Recently, Seuret and Gouaisbaut [21] proposed 

a Wirtinger-based integral inequality, which includes the Jensen 

one as a special case and yields tighter bounds of integral terms 

of quadratic functions than the Jensen one. In order to further 

reduce conservatism from the use of the Jensen inequality and 

the Wirtinger-based one, Park et al. [20] developed some aux- 

iliary function-based integral inequalities, which encompass the 

Wirtinger-based one and yields tighter bounds of integral terms of 

quadratic functions than the Wirtinger-based one. Besides a new 

established inequality in Lemma 7 , we will utilize some auxiliary 

function-based integral inequalities to get our main results. 

This paper investigates the stochastic synchronization prob- 

lem for a class of hybrid neural networks with random coupling 

strengths and mixed time-delays in the mean square. The main 

contributions of this paper can be summarized as follows: 

(1) Not all the symmetric matrices involved in the employed 

quadratic LKF are required to be positive definite, for detail 

please refer to Remark 3 . 

(2) A novel inequality (see Lemma 7 ) is established, which is 

a double integral form of the Wirtinger-based integral in- 

equality [21] , includes the Jensen one as a special case and 

yields tighter bounds of integral terms of quadratic functions 

than the Jensen one. Based on this new inequality, we can 

utilize more information to obtain less conservative delay- 

dependent synchronization conditions. 

(3) By applying a simple variation of the reciprocal convex ap- 

proach in [17] , tighter upper bounds of some reciprocal con- 

vex combinations are obtained with less conservative ap- 

proximation. For detail please refer to Remark 6 . 

(4) Proper combination of the novel inequality (see Lemma 7 ) 

and some auxiliary function-based integral inequalities (see 

Lemmas 5, 6, 8 ) with the reciprocal convex combination 

technique assures us to derive less conservative synchroniza- 

tion criteria. 

Notations : Throughout this paper, let W 

T , W 

−1 denote the trans- 

pose and the inverse of a square matrix W , respectively. W > 0( < 0) 

denotes a positive (negative) definite symmetric matrix, I denotes 

the identity matrix with compatible dimension, 0 m × n denotes the 

m × n zero matrix, the symbol “∗” denotes a block that is readily 

inferred by symmetry. The shorthand col { M 1 , M 2 , . . . , M k } denotes 

a column matrix with the matrices M 1 , M 2 , . . . , M k . sym( A ) is de- 

fined as A + A 

T , diag{ · } stands for a diagonal or block-diagonal ma- 

trix. E {·} represents the mathematical expectation. || · || stands for 

the Euclidean norm; matrices, if not explicitly stated, are assumed 

to have compatible dimensions. 

2. Problem description and preliminaries 

In this paper, we consider the following hybrid neural networks 

with mixed delays and random coupling strengths: 

˙ x i (t) = − Dx i (t) + A f (x i (t)) + B f (x i (t − τ (t))) 

+ C 

∫ t−σ

−∞ 

κ(t − s ) f (x i (s ))d s 

+ α(t) 
m ∑ 

j=1 

u i j �x j (t) + β(t) 
m ∑ 

j=1 

v i j �x j (t − τ (t)) 

+ γ (t) 
m ∑ 

j=1 

w i j ϒ

∫ t−σ

−∞ 

κ(t − s ) x j (s )d s + ψ(t) , 

i ∈ M = { 1 , 2 , . . . , m } . (1) 

where x i (t) = (x i 1 (t) , x i 2 (t ) , . . . , x in (t )) T ∈ R 

n is the state vector 

of the i th node of the coupled networks at moment t , pos- 

itive integer n corresponds to the number of neurons. D = 

diag { d 1 , d 2 , . . . , d n } is a positive diagonal matrix with d j repre- 

senting the rate with which the jth neuron will reset its poten- 

tial to the resting state in isolation, A, B, C are the connection 

weight matrix, the discretely delayed connection weight matrix, 

the distributively delayed connection weight matrix, respectively. 

f (x i (t)) = 

(
f 1 (x i 1 (t)) , f 2 (x i 2 (t)) , . . . , f n (x in (t)) 

)T ∈ R 

n denotes the 

neural activation function. Positive scalar σ , bounded function 

τ ( t ) represent unknown discrete and time-varying delays re- 

spectively with 0 ≤ τ (t) ≤ τ̄ , ˙ τ (t) ≤ τ ′ , where τ̄ is a positive 

scalar. κ(·) : [0 , + ∞ ) → [0 , + ∞ ) is the delay kernel. Random vari- 

ables α( t ), β( t ) and γ ( t ) are mutually independent, which de- 

note the random coupling strengths of non-delayed couplings, 

discretely time-delayed couplings and distributively time-delayed 

couplings respectively. We assume that almost all the values of 

α( t ), β( t ) and γ ( t ) are taken on some nonnegative intervals, i.e., 

α( t ) ∈ ( ρ1 ( t ), η1 ( t )), β( t ) ∈ ( ρ2 ( t ), η2 ( t )) and γ ( t ) ∈ ( ρ3 ( t ), η3 ( t )), 

where ρ j ( t ), ηj ( t ) are nonnegative constants with ρ j (t) < η j (t) , j = 

1 , 2 , 3 . ψ( t ) is an external input vector, �, � and Y are inner cou- 

pling matrices between coupled nodes. Symmetric matrices U = 

(u i j ) m ×m 

, V = (v i j ) m ×m 

and W = (w i j ) m ×m 

stand for outer coupling 

matrices of the whole network satisfying the following diffusive 

conditions: u i j ≥ 0(i 	 = j) , u j j = −∑ m 

i =1 ,i 	 = j u i j ; v i j ≥ 0(i 	 = j) , v j j = 

−∑ m 

i =1 ,i 	 = j v i j ; w i j ≥ 0(i 	 = j) , w j j = −∑ m 

i =1 ,i 	 = j w i j , i, j ∈ M. 

The initial value of networks (1) is given by x i (s ) = ϕ i (s ) , where 

ϕi ( s ) is a continuous function from (−∞ , 0] to R 

n . 

Throughout this paper, we make the following assumptions and 

definition. 

Assumption 1 (Liu et al. [14] ) . There exist constants l −
j 
, l + 

j 
such 

that 

l −
j 

≤ f j (p) − f j (q ) 

p − q 
≤ l + 

j 
, j ∈ N = { 1 , 2 , . . . , n } , 

for any p, q ∈ R with p 	 = q . 

For simplicity, we denote L 1 = diag 
{

l −
1 

l + 
1 

, l −
2 

l + 
2 

, . . . , l −n l 
+ 
n 

}
, L 2 = 

1 
2 diag 

{
l −
1 

+ l + 
1 

, l −
2 

+ l + 
2 

, . . . , l −n + l + n 

}
. 
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