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a b s t r a c t 

In this paper, we aim to design the optimal transmission scheme for two Gauss–Markov systems with 

finite resources. The setup that only two sensor nodes were scheduled, which monitor different linear 

dynamical systems, respectively. Two scenarios : the sensor has abundant calculation capability and the 

sensor has limited calculation capability are considered. For the second scenario, considering that the 

optimal schedule should collected a finite sequence of previous measurements. We are able to construct 

a quasi-optimal schedules. Due to bandwidth limitation and transmission power restriction, the sensors 

cannot communicate with the remote center and send the measurement data all the times. By exploiting 

the estimation error covariance at the remote estimation center to describe the quality of communi- 

cation, the transmission schedule problem is formulated as an optimal problem. A necessary condition 

for the scheduling scheme of the sensors to be optimal is provided. Based on this necessary condition, 

we propose an explicit optimal periodic schedule, which is rigorously proved to have a minimal esti- 

mation error at the estimation center while satisfying the transmission power and channel bandwidth 

constraints. Simulation examples are given at last to verify the validity of the theoretical results. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Networked control systems (NCSs) have gained increasing in- 

vestigation attention over the last decade [1,2] . Owing to the 

advances in wireless communication, control and sensor tech- 

nologies, NCSs have extensive applications to the fields such as 

unmanned aerial vehicle, battlefield surveillance, environmental 

monitoring, smart grid [3,4] , health care and aerospace. Specifi- 

cally, in recent years, networked control system theory has been 

successfully applied to wireless sensor networks and fruitful re- 

sults are obtained [5] . Remote state estimation plays an very im- 

portant role in the above applications. Many techniques, for in- 

stance, Kalman filter, are developed to estimate the system state 

optimally by iteration when receiving the observed data with in- 

evitable noise [7,9] . With the development of internet, network 

sensing and network control promote the system convenience of 

operation and diagnosis, while keeping and enhancing the agility 

and flexibility of the system. Nevertheless, despite of many advan- 

tages the networked control system provide, there are also some 

obstacles which limit the application and development of results 
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on networked control system. For instance, the finite shared chan- 

nel bandwidth of system may impede information transmission of 

nodes in NCSs which in some degree reduces the quality of es- 

timation [10] . Besides, in general, the sensor nodes in a NCS (e.g., 

wireless sensor network) are powered by batteries which have lim- 

ited power and are hard to charge or replace [6] . Hence, sensors 

can only communicate with each other in limited times for data 

collection. Accordingly, a sensor has to decide whether to send its 

current data packet or not. This decision-making process is referred 

to as sensor data scheduling [15] . There are large numbers of lit- 

eratures focusing on the investigation on sensor data scheduling 

[3] . Different methods are proposed to solve the sensor scheduling 

problems with different scheduling objectives, e.g., [13,15] . Some 

related works are curtly reviewed as follows. Tiwari et al. [11] con- 

sider sensor scheduling problem for discrete-time system which 

adopts Kalman filter to obtain the estimation of system state. They 

study the case that there are two system processes and only a sin- 

gle sensor need to observe the above two system states, respec- 

tively. The single sensor only observes one process at a time; thus, 

for the sake of minimizing the sum of two system estimation er- 

rors, they propose a scheduling scheme to decide which process 

that the sensor behooves observe for raising the total system per- 

formances. Shi et al. [13] study the scenario that there are two 

sensors scheduling a process. As a result of the channel bandwidth 

constraint, only one sensor is permitted to observe the process at 
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a time. Considering that the two sensors have different level ob- 

servation accuracies, the optimal periodic scheduling scheme de- 

termining which sensor need to observe the process is proposed 

to minimize the system average estimation error covariance. Yang 

et al. [14] consider sensor selection in order to reach consensus 

over wireless sensor networks under limited energy constraint. 

They provide a sensor selection scheme to schedule sensors to 

measure the system state in order to minimize the system esti- 

mation error covariance while guarantees the sensor energy con- 

straint satisfied. Shi et al. [15] also ponder sensor scheduling prob- 

lem under transmission power constraint and provide an optimal 

sensor scheduling scheme including energy plan that aims at min- 

imizing the estimation error covariance meanwhile ensuring the 

energy constraint satisfied. 

The aforementioned literatures are devoted to a single system 

[16,18] or process [19] under single constraint [10,20,21] such as 

energy or bandwidth [22] . Ding et al. [12] are concerned with the 

attack scheduling of deception attacks for discrete time systems, 

an attacker with the given attack task needs to decide how many 

the maximum number is for different kinds of attack scenarios. 

However, in most real applications, sensors are sparsely placed to 

monitor multiple dynamical processes of interest [8] . Hence, it is of 

both theoretical and practical interest to consider sensor schedul- 

ing for multiple systems. In addition, as pointed out previously, we 

may encounter essential restrictions on communication and power 

in practical applications simultaneously. In view of the above inspi- 

ration, in this manuscript, we aim to design the optimal transmis- 

sion scheme for two Gauss–Markov systems with finite resources. 

Considering that two sensors monitor two different systems, re- 

spectively, only one sensor is allowed to monitor a single system 

and send the communication data by channel at a time due to 

limited communication bandwidth. Moreover, we devote ourself to 

scheduling two separate processes while satisfying channel band- 

width and transmission power constraint. The main contributions 

of this work are summarized as follows: 

1. We consider and analyse two scenarios: the sensor has abun- 

dant calculation capability and the sensor has limited calcula- 

tion capability in this manuscript. For the first scenario, we are 

able to construct the optimal scheduling scheme. For the sec- 

ond scenario, we are able to provide the optimal scheduling 

scheme based on Kalman filtering with intermittent observa- 

tion when the sensor is scheduled to send current and several 

previous S + p measurements, providing the estimator error co- 

variance has an upper bound whenever a measurement packet 

arrives. When the window of size T = ∞ , we get some great 

theoretical results and provide the optimal scheduling scheme 

when all the measurement data packets so far are transmitted 

to remote estimator. The obtained estimation error covariance 

is a lower bound of other case. Besides, we show that the same 

schedule scheme is still optimal as long as T is sufficiently large 

and the lower bound of T is relevant to the energy budget. 

2. Most existing works focus on a single system or process un- 

der single constraint such as limited energy or bandwidth, not 

enough research efforts have been put in the case of different 

sensors monitoring different systems, which is widely encoun- 

tered in practice. Typically in most real applications, sensors are 

sparsely placed to monitor multiple dynamical processes of in- 

terest under multiple restrictions. Thus, In view of the above 

inspiration, we focus on scheduling two sensors observing two 

systems while considering limited energy and bandwidth con- 

straints simultaneously. 

The remainder of the paper is organized as follows. In Section 2 , 

the problem of interest is formulated and some preliminary results 

are provided. Section 3 gives a necessary condition for the sensor 

scheduling scheme to be optimal. Based on such necessary con- 

dition, Section 4 constructs a specific optimal scheduling scheme. 

An example is provided in Section 5 to verify the optimality of 

scheduling scheme. Conclusions are drawn at last in Section 6 . 

Notations: Z denotes the set of non-negative integers. k repre- 

sents the time index. N denotes the set of natural numbers. R n is 

n -dimensional Euclidian spaces. S n + and S n ++ represent the sets of 

n × n positive semi-definite and positive definite matrices, respec- 

tively. If X ∈ S n + , we simply depict as X ≥ 0 and X > 0 if X ∈ S n ++ . For 

a matrix X, X 

′ denotes its transpose. Tr [ · ] represents the trace of a 

matrix. X ≥ Y if X − Y ∈ S n + . E [ · ] denotes the expectation of a ran- 

dom variable. For function f 1 , f 2 with appropriate domains, f 1 f 2 ( x ) 

denotes the function composition f 1 ( f 2 ( x )), and f n (x ) � f ( f n −1 (x )) 

with f 0 � x . 

2. Problem setup 

2.1. System model 

We consider the two Gauss–Markov discrete-time systems as 

follows (see Fig. 1 ): 

x i k +1 = A i x 
i 
k + w 

i 
k , i = 1 , 2 , (1) 

where x i 
k 

∈ R n represents state vector of system i at time k . There 

are also two sensors that are used to observe these two systems, 

respectively, 

y i k = C i x 
i 
k + v i k , i = 1 , 2 , (2) 

y i 
k 

is the sensor measurement of system i , w 

i 
k 

∈ R n and v i 
k 

are re- 

ciprocally unrelated White Gaussian Noises (WGN) with covari- 

ances Q i ≥ 0 and R i > 0 for i = 1 , 2 . The initial status value x i 
0 

is also 

zero mean Gaussian and its covariance matrix is E[ x i 
0 
x i 

0 
′ ] = �i > 0 , 

which is unrelated with w 

i 
k 

and v i 
k 

for all time k ≥ 0 and i = 1 , 2 . 

( A i , C i ) and (A i , 
√ 

Q i ) are observable and controllable for i = 1 , 2 , 

respectively. 

After sensor i obtains y i 
k 
, we describe the information set of 

sensor i at time k by 

ζ i 
k � { γ i 

0 , γ
i 

1 , . . . , γ
i 

k , γ
i 

0 y 
i 
0 , γ

i 
1 y 

i 
1 , . . . , γ

i 
k y 

i 
k } , (3) 

with ζ i 
−1 

� ∅ for i = 1 , 2 . Denote by ˆ x s 
k,i 

= E[ x i 
k 
| ζ i 

k 
] which is the 

minimum mean squared error estimation of x i 
k 
. Define the local 

estimation error of sensor i as 

e i k = x i k − ˆ x s k,i . (4) 

We also define ˆ x i 
k | k −1 

� E[ x i 
k 
| ζ i 

k −1 
] as a priori evaluate of x i 

k 
, which 

is the predicted state of system when the observation value is un- 

known and P i 
k | k −1 

� E[(x i − x i 
k | k −1 

)(x i − x i 
k | k −1 

) 
′ | ζ i 

k −1 
] as the evalu- 

ate error covariance matrices of ˆ x i 
k | k −1 

. From standard Kalman fil- 

tering [23] , ˆ x s 
k,i 

and its estimation error covariance matrix P s 
k,i 

= 

E[(e i 
k 
)(e i 

k 
) ′ | ζ i 

k 
] is obtained by iteration as follows: 

ˆ x i k | k −1 = A i ̂  x s k −1 ,i , (5) 

P i k | k −1 = A i P 
s 
k −1 ,i A 

′ 
i + Q i , (6) 

K i = P i k | k −1 C 
′ 
i [ C i P 

i 
k | k −1 C 

′ 
i + R i ] 

−1 , (7) 

ˆ x s k,i = 

ˆ x i k | k −1 + K i [ y 
i 
k − C i ̂  x i k | k −1 ] , (8) 

P s k,i = [ I − K i C i ] P 
i 
k | k −1 , (9) 

where the recursion starts from ˆ x s 
0 ,i 

= 0 and P s 
0 ,i 

= �0 for each i = 

1 , 2 . Two scenarios are considered in this paper described in the 

following subsection. 
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