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a b s t r a c t 

Manifold learning approaches seek to find the low-dimensional features of high-dimensional data. When 

some values of the data are missing, the effectiveness of manifold learning methods may be greatly lim- 

ited since they have difficulty in determining the local neighborhoods and discovering the local structures 

of neighborhoods. In this paper, a novel manifold learning approach called local tangent space alignment 

via nuclear norm regularization (LTSA–NNR) is proposed to discover the nonlinear features of the incom- 

plete data. The neighbors of each sample point are selected using the cosine similarity measurement. A 

new nuclear norm regularization model is then proposed to discover the local coordinate systems of the 

determined neighborhoods. Different with the traditional manifold learning approaches, the dimensions 

of local coordinate systems are various in a reasonable range. The global coordinates of the incomplete 

data are finally obtained by aligning the local coordinates together. We demonstrate the effectiveness of 

our method on real-world data sets. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Machine learning and data mining may involve high- 

dimensional data sets with arbitrary patterns of missing data 

in practical applications. For example, in video surveillance appli- 

cations, part of the target of the monitoring may be in the shade 

of other objects. The occluded images can be viewed as incomplete 

data. How to discover the intrinsic structure of incomplete data is 

increasingly becoming a focus [19,23,25] . 

In recent years, matrix factorization(MF) approaches are pro- 

posed to discover the linear features of incomplete data. They try 

to find a good approximation to the incomplete data by the prod- 

uct of two or three matrix factors. In general, the regularized tech- 

niques are widely used to avoid over-fitting problem [7,8,13] . Some 

constraints may be also imposed on the matrix factors such as or- 

thogonal constraints [11,14] and non-negative constraints [6,16,24] . 

Although these approaches have been widely used in some ap- 

plications such as recommendation system [4,8,13] , gene expres- 

sion analysis [16] and object recognition [6,11] , the effectiveness of 

them may be very limited when the data points lie on or close to 

a nonlinear manifold. 
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Recently, manifold learning methods are proposed to learn the 

nonlinear low-dimensional manifolds from sample data points em- 

bedded in high-dimensional spaces. The proposed algorithms in- 

clude isometric mapping (ISOMAP) [17] , locally linear embedding 

(LLE) [10] , laplacian eigenmaps (LE) [1] , nonlinear embedding pre- 

serving multiple local-linearities (NEML) [22] and local tangent 

space alignment (LTSA) [29] , etc. One basic idea of most manifold 

learning algorithm is to construct the local neighborhoods of the 

manifold and linearly approximate the local manifold geometries 

within the neighborhoods, and then nonlinearly map the points 

to a lower dimensional space preserving the discovered local ge- 

ometries. These algorithms have been successfully applied in many 

fields of information processing due to the simple geometric in- 

tuitions, straightforward implementation and global optimization 

[12,18] . However, they may fail on the data with missing values. 

For the incomplete data, it is difficult to select the neighbors of 

each sample point which can reflect the local geometric structure 

of the manifold. More important, the local geometric structures 

may be blurry. And it is difficult to exploit the local geometries 

in the presence of missing values. 

More recently, there are some efforts on developing new man- 

ifold learning algorithms for incomplete data. Wang et al. pro- 

posed a denoising algorithm to reconstruct the missing values 

of the incomplete data which generalizes matrix completion to 

curved manifolds [20] . It can be used as a post-processing step 

on an initial reconstruction of incomplete data, but does not learn 

the nonlinear features explicitly. In [2] , it learns the nonlinear 
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low-dimensional representation of the incomplete data and re- 

coveries the missing values by unsupervised regression approach. 

However, local optimum exists and good initializations of missing 

values are also required for the proposed algorithm. In [3] , an im- 

proved LTSA algorithm called EM-LTSA is proposed to learn mani- 

fold from corrupted image set. It obtains the local coordinates us- 

ing an extended EM-based PCA algorithm instead of standard SVD 

technique. However, it may have a limited effectiveness on the in- 

complete image set if there are a considerable number of missing 

pixels. 

Most of the existing algorithms reconstruct the incomplete data 

before learning the low-dimensional features. The effectiveness of 

these algorithms highly relies on the accuracy of recovering the 

missing values. In this paper, we aim to propose an effective man- 

ifold learning method to discover the nonlinear features of the 

incomplete data explicitly without recovering the missing values. 

The neighborhoods of each sample point are firstly determined 

using the cosine similarity measurement instead of the Euclidean 

distance measurement. A new nuclear norm regularization model 

is then proposed to discover the local coordinate systems of the 

determined neighborhoods only using the known values. Unlike 

those work in [3,29] , the dimensions of the discovered local coor- 

dinate systems are various in a reasonable range rather than a con- 

stant value. The various dimensional local coordinate systems are 

more stable for incomplete data. A novel algorithm called local tan- 

gent space alignment via nuclear norm regularization (LTSA–NNR) 

is then proposed to obtain the global coordinates of the incomplete 

data by aligning the discovered local coordinates. 

The rest of the paper is organized as follows. We briefly review 

the LTSA algorithm in Section 2 and discuss its failure mode on 

incomplete data. Local linear fitting via nuclear norm regulariza- 

tion to obtain the local coordinates of incomplete data is proposed 

in Section 3 . Then we propose the main algorithm LTSA–NNR in 

Section 4 . In Section 5 , we compare the proposed LTSA–NNR with 

the original LTSA and its extensions. In Section 6 , several experi- 

ments are carried out to evaluate LTSA–NNR. Finally, the conclu- 

sions are given in Section 7 . 

2. A brief review of LTSA 

The manifold learning approaches can be classified into global 

methods such as ISOMAP [17] and local methods such as LLE 

[10] and its variations, LE [1] , NEML [22] and LTSA [29] , etc. Most 

of the manifold learning approaches consists of three steps :(1) 

construct the local neighborhoods, (2) extract the local geometries 

within the neighborhoods, and (3) minimize a global cost function 

to obtain the embedding results. In general, the manifold learn- 

ing approaches are different in the second and third steps. For ex- 

ample, ISOMAP computes the geodesic distances between points, 

and then projects the points into the low-dimensional space to 

preserve the geodesic distances. LLE computes the reconstruction 

weights between each sample point and its neighbors, and then 

finds the embedding coordinates that are reconstructed by the 

same weights. LE constructs a weighted graph to exploit the local 

geometry, and determines a low-dimensional embedding by forc- 

ing the neighbors to be close in the embedding space. NEML dis- 

covers the local structure of the local neighborhood using multiple 

linear independently weight vectors, and find the global coordi- 

nates in the embedding space to preserve the discovered multiple 

local-linearities. LTSA constructs local linear fitting to approximate 

the tangent space at each sample point, and then aligns the local 

coordinates to obtain the embedding results. Since our work is an 

extension of LTSA, we outline the basic steps of LTSA as follows. 

Given a data set X = [ x 1 , . . . , x N ] with x i ∈ R m , sampled from a 

d -dimensional manifold. Assuming that d is known, LTSA aims to 

find the global coordinates t 1 , . . . , t N by proceeding in the following 

steps: 

(1) Setting local neighborhoods . For each x i , i = 1 , . . . , N, finding its k 

nearest neighbors (including x i itself) using Euclidean distance 

measurement. Denote the neighbor set X i = [ x i 1 , . . . , x i k ] . 

(2) Extracting local coordinates . For each x i , i = 1 , . . . , N, applying 

PCA to the neighbor set X i to approximate the local tangent 

space of x i and obtain the local coordinates �i . It can be done 

by an optimal linear fitting to the sample points in the neigh- 

borhood, i.e., 

min 

c,U, �
‖ X i − ce T k − U�‖ 

2 
F 

s.t. c ∈ R 

m , U ∈ R 

m ×d , U 

T U = I d , � ∈ R 

d×k , 

(1) 

where e k ∈ R k is a vector of all ones and I d is a d × d elementary 

matrix. 

(3) Aligning local coordinates . For the local neighborhood X i , the lo- 

cal reconstruction error 

min 

c∈ R d ,L ∈ R d×d 
‖ T i − ce T k − L �i ‖ 

2 
F 

measures the difference between T i = [ t i 1 , . . . , t i k ] and the lo- 

cal coordinates �i under the optimal affine transformation. To 

align the N sets of the local coordinates �i , the global coordi- 

nates T = [ t 1 , . . . , t N ] should minimize the local reconstruction 

error over all local neighborhoods, i.e., minimize the global re- 

construction error 

min 

T,T T T = I d 

N ∑ 

i =1 

min 

c∈ R d ,L ∈ R d×d 
‖ T i − ce T k − L �i ‖ 

2 
F . (2) 

The theory analysis about the alignment procedure can be 

found in [26] . 

The first row of Fig. 1 illustrates these three steps of LTSA. As it 

can be seen, the local tangent space can be well approximated by 

applying PCA to the neighbor set. 1 In the step of alignment, the lo- 

cal coordinate system in the embedding space can match the dis- 

covered local coordinate system (the green star points) well. And 

the embedding results show that LTSA can recover the arc length 

of the curve with an affine transformation. Generally, LTSA can 

work well on the data which are well sampled from the manifold. 

However, LTSA may fail on the incomplete data. The data point 

with missing values acts as an outlier. The second row of Fig. 1 il- 

lustrates the failure of LTSA on the incomplete data, due to the 

following reasons: (1) The neighbors of the incomplete points may 

be wrongly determined using the Euclidean distance measurement. 

(2) The local PCA cannot give an acceptable estimate to the tangent 

space at the incomplete point, and the local coordinates have large 

deviations to the true coordinates. 

The example in Fig. 1 clearly shows that it is desirable to have 

better strategies for determining the local neighborhoods and ex- 

tracting the local coordinates. In the paper, our algorithm aims to 

find the correct neighbors only using the known values and extract 

the true coordinates of the local neighborhoods of the incomplete 

points. See the third row of Fig. 1 for illustrating the motivation of 

our algorithm. 

3. Local linear fitting via nuclear norm regularization 

Assume that we are given a set of incomplete data points 

x 1 , . . . , x N , where x i ∈ R m with missing values are sampled from a 

d -dimensional manifold. We represent the pattern of missing val- 

ues in x i with an indication vector f i = [ f i 1 , f i 2 , . . . , f im 

] T where 

1 The angle between the local tangent space (red line) and span( U i ) (blue line) 

approximates to 0. 
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