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a b s t r a c t 

Multi-label learning has drawn great attention in recent years. One of its tasks aims to build classification 

models for the problem where each instance associates with a set of labels. In order to exploit discrim- 

inative features for classification, some methods are proposed to construct label-specific features. How- 

ever, these methods neglect the correlation among labels. In this paper, we propose a new method called 

LF-LPLC for multi-label learning, which integrates Label-specific features and local pairwise label corre- 

lation simultaneously. Firstly, we convert the original feature space to a low dimensional label-specific 

feature space, and therefore each label has a specific representation of its own. Then, we exploit the local 

correlation between each pair of labels by means of nearest neighbor techniques. According to the local 

correlation, the label-specific features of each label are expanded by uniting the related data from other 

label-specific features. With such a framework, it enriches the labels’ semantic information and solves the 

imbalanced class-distribution problem. Finally, for each label, based on its label-specific features we con- 

struct a binary classification algorithm to test unlabeled instances. Comprehensive experiments are con- 

ducted on a collection of benchmark data sets. Comparison results with the state-of-the-art approaches 

validate the competitive performance of our proposed method. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

In traditional supervised learning, each instance belongs to a 

single class label, which is called single-label classification. How- 

ever, multi-label data exists in many applications, such as image 

annotation [1,27,33] , text classification [5,23,32] , and bioinformat- 

ics [4,29] . For example, an image can be annotated with several 

keywords [1] ; a document belongs to multiple related topics, such 

as Shanghai World Expo, economics and even volunteers [23] ; a 

gene may be attached with a set of functional classes, such as en- 

ergy, metabolism, and cellular biogenesis [4] . 

During the past decade, numerous multi-label learning algo- 

rithms have been developed, which can be classified into two cate- 

gories [38] : problem transformation and algorithm adaption. Prob- 

lem transformation is a common and intuitive approach, which 

views the problem of multi-label problems as one or more tradi- 

tional single-label problems. Classical problem transformation al- 
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gorithms include binary relevance (BR) [1] , pruned problem trans- 

formation (PPT) [25] , label power set (LP) [28] , and so on. Algo- 

rithm adaption performs learning algorithms on multi-label data 

directly by extending traditional single-label learning algorithms, 

such as multi-label informed latent semantic indexing (MLSI) [34] , 

and multi-label dimensionality reduction via dependence maxi- 

mization (MDDM) [36] . 

In multi-label learning, the performance of many classifica- 

tion algorithms benefit from the label correlation, i.e., the in- 

formation of one label may be helpful for learning other re- 

lated labels. For example, in a library of scenery images, the 

image tagged with “desert” usually is more likely to be tagged 

with “camel” than “tree”. To date, a number of multi-label algo- 

rithms have been proposed to exploit the relationship among la- 

bels [11,12,21,22,37] , which utilize the relationship among labels 

to construct probability-based or optimization-based classification 

models. 

On the other hand, multi-label data usually have high dimen- 

sional features [16,19] , which contain different concepts related to 

different labels. Specifically, an instance with a feature vector de- 

scribes the mixed concepts of multi-labels (a label vector) at the 

same time. Hence, for each label, the label-specific features will be 
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Fig. 1. The imbalance ratio variation of 14 class labels in yeast data set. 

much more informative and should be converted from the origi- 

nal features [40] . It is well worth noting that label-specific features 

conversion is different from traditional feature reduction [3,17,18] , 

where all labels share the same features. 

Except from label correlation and label-specific features, multi- 

label learning also suffers from a high level of class-imbalance 

[6,8,20,31,38] . That is, the distribution of positive instances and 

negative instances for each label is usually highly imbalanced and 

varies widely. It is even worse when the number of labels is large 

and the label density is low. For example, Fig. 1 shows the imbal- 

ance ratio (the number of positive instances vs. the number of neg- 

ative instances) of each label on the yeast data. From Fig. 1 , we can 

observe that there are 12 out of the 14 class labels whose imbal- 

ance ratios are less than 1. Especially, in the 14th label, the number 

of positive instances is much less than the number of negative in- 

stances. 

As discussed above, label correlation, label-specific features, and 

class-imbalance are three characteristics in multi-label learning. 

However, many learning algorithms study these problems inde- 

pendently. In this paper, we propose a new multi-label learning 

algorithm named LF-LPLC. The main idea of LF-LPLC is to uti- 

lize the label-specific features and the relationship among labels 

to obtain discriminative information for each label, and eliminate 

the problem of class-imbalance. Firstly, LF-LPLC constructs a label- 

specific feature space for each label. Then, for each label, we en- 

large the size of positive instances via copying others related pos- 

itive instances belonging to other correlated labels. Note that the 

“copying” operation requires the dimensions of these label-specific 

feature spaces to be identical. Therefore, a process called class- 

alignment is introduced to preprocess training data before con- 

structing the label-specific feature space. Finally, SVM is trained 

on each label-specific feature space and used to predict the corre- 

sponding label. A comprehensive set of experiments are conducted 

to verify the performance of LF-LPLC against other state-of-art ap- 

proaches on eight benchmark data sets. 

The rest of this paper is organized as follows. Section 2 in- 

troduces the related work. Section 3 presents our proposed algo- 

rithm in detail. Comprehensive experimental results are discussed 

in Section 4 . Conclusions and future work are given in Section 5 . 

2. Related work 

At present, a large number of multi-label learning methods 

have been developed, and the detailed survey can be found in 

[7,38] . In this section, we will briefly review the related work, i.e., 

some works about label-specific features and label correlation. 

Label-specific features was first proposed in [40] , called LIFT, 

which constructs specific features for each label. At first, for each 

label, LIFT gets centers of its positive and negative instances via the 

algorithm of k −means [14] . Then, those instances are transformed 

into new ones, whose features are composed of distances between 

original instances and clustering centers. These features are called 

label-specific features. Note that the number of centers are related 

to the number of positive and negative instances. If the training 

set is class-imbalanced, the number of centers will be different 

among different labels. So, the dimensions of label-specific feature 

space are usually different because of class-imbalance. At last, SVM 

is applied on the process of training and test. LIFT shows an in- 

tuitive implementation of label-specific features construction, and 

related experiments show its excellent classification effect. Zhang 

et al. [39] figured out that LIFT does not utilize the discrimina- 

tive information lying between positive and negative instances, and 

proposed a algorithm named ML-DFL. ML-DFL constructs a matrix 

whose elements represent the similarities based on distances be- 

tween positive and negative instances. Then, it adapts a spectral 

clustering algorithm [24] to exploit the closely located local struc- 

tures beneath positive and negative instances. Different from LIFT 

and ML-DFL, Huang et al. [13] utilized feature selection to obtain 

label-specific features and proposed the algorithm called LLSF. In 

LLSF, linear regression is applied to get the weights of features for 

each label. If the weight of some features is zero for a label, it 

has no effect on the discrimination of that label. Furthermore, in 

order to incorporate label correlation, LLSF requires that strongly 

correlated labels should have large similarity between their weight 

vectors. 

To exploit the correlation among labels, a number of multi-label 

algorithms are presented. For example, Zhang and Zhang [37] used 

a Bayesian network structure to encode the conditional dependen- 

cies of labels, and constructed classifiers for each label by incorpo- 

rating its parental labels as additional features. This method con- 

siders that the label correlations are shared by all instances. Huang 

and Zhou [11] expanded the original features by adding a code 

vector for each instance. It firstly divides training data into sev- 

eral groups based on clustering. Then, it generates the prototype 

of label vectors for each group. The code vector is composed of the 

similarities between the label vector and those prototypes. Huang 

et al. [10] considered that if two labels are related, the classifier 

model generated for one label can be helpful for the other label, 

and the greater the help, the stronger the relationship. Huang et al. 

[12] proposed a method to exploit local pairwise label correlations. 

For a given instance, it utilizes the co-occurrence frequency of two 

ground true labels in the k nearest neighbors to indicate their rela- 

tionships. The higher the frequency, the stronger the relationship. 

It maximizes the posterior probability to predict unseen instances, 

which accords to the distribution of each label in the k nearest 

neighbors and their strongest local pairwise label correlations. 

3. The proposed algorithm 

In multi-label learning, let X = R 

d be the domain of in- 

stances and let Y = { l 1 , l 2 , . . . , l Q } denote the finite set of labels. 

D = { (x i , y i ) | 1 ≤ i ≤ N, x i ∈ X , y i ⊆ Y} denotes the training data that 

consists of N instances and its related labels. For convenience, 

y i is often written as a vector consisting of +1 and −1. That is, 

y i ∈ {−1 , +1 } |Y| is used to identify whether a label is assigned to 

the instance x i . y i j = +1(1 ≤ j ≤ Q ) means that l j belongs to the in- 

stance x i ; otherwise y i j = −1 . Instances associating with a given la- 

bel are considered as positive instances, otherwise, are considered 

as negative ones. For each label l k , the set of positive instances are 

denoted as P k and the set of negative instances are denoted as N k . 

The goal of multi-label learning is to define a set of real value func- 

tions f i : X → R (i = 1 , 2 , . . . , Q ) . The bigger the value of f i means 
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