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a b s t r a c t 

This paper investigates the L 2 –L ∞ 

state estimation problem for a class of delayed neural networks. Atten- 

tion is focused on the design of a full-order state estimator such that the prescribed L 2 –L ∞ 

performance 

constraint can be ensured. By utilizing the time-delay information sufficiently, a novel L 2 –L ∞ 

performance 

analysis approach is proposed in this paper for the first time. Based on such an approach, the less conser- 

vative sufficient conditions are established in terms of linear matrix inequalities under which the L 2 –L ∞ 

performance level can be achieved for the estimation error dynamics. Several numerical examples show 

that the proposed approach in this paper is explicitly effective in reducing the possible conservatism. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Nowadays, neural networks have been widely applied in many 

fields, such as pattern recognition, associative memory, signal pro- 

cessing and solving optimization problem [22,25] . Considering that 

the transmission delays between the neurons are always inevitable 

and, it is thus more interesting to investigate the neural net- 

works with time delays [14] . In many specific applications, the 

equilibrium points of neural networks are required to be stable. 

Moreover, the neuron states should be obtained from network 

measurements for certain applications. Therefore, two interesting 

problems have been well considered for delayed neural networks 

over the past two decades. One is the stability/passivity analysis 

problem [2,5,8,15,18,27,41,44,45] and the other is the state estima- 

tion/filtering problem [6,26,28,34,39,40,47] . On the other hand, it 

has been recognized that the linear matrix inequality (LMI) ap- 

proach is more convenient for the analysis and design of delayed 

dynamical systems. In addition, when the size of time delay is 

small, it has been identified that delay-dependent results are gen- 

erally less conservative than delay-independent ones. 

As for the state estimation/filtering and control problems for 

dynamical systems with or without time delays, it is often the case 

that the system performance should be considered to deal with 
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the exogenous disturbances [4,12,13,19–21,24,29,30,35,36,42,43,48] . 

The main objective of the celebrated Kalman filtering is to min- 

imize the variance of the estimation error [21,24] . However, it is 

worth mentioning that the Kalman filtering is based on the known 

statistics of the Gaussian noises. For unknown but energy bounded 

disturbances, one can resort to the H ∞ 

and L 2 –L ∞ 

(is called as l 2 –

l ∞ 

in a discrete-time framework) performance indexes. The aim of 

the H ∞ 

estimator/filtering is to ensure that the L 2 ( l 2 ) gain from 

the exogenous disturbances to the estimation error is less than a 

prescribed positive scalar [12,19,20] . The L 2 –L ∞ 

( l 2 –l ∞ 

) filtering is 

to minimize the peak value of the estimation error for all possible 

energy bounded disturbances, which is also referred as the energy- 

to-peak filtering or the generalized H 2 filtering [4,12,13,35,36,43] . 

Generally speaking, when the peak value of the filtering error is 

required to be as small as possible, the L 2 –L ∞ 

( l 2 –l ∞ 

) filtering is 

the better choice [43] . 

Over the past years, the H ∞ 

and L 2 –L ∞ 

( l 2 –l ∞ 

) state es- 

timation/filtering problems have also received considerable at- 

tention for neural networks with or without time delays 

[1,10,11,16,17,23,37,38,46] . For example, the delay-dependent H ∞ 

and L 2 –L ∞ 

filtering problems have been addressed in [16] for a 

class of neural networks with time-varying delay. In [10] , the L 2 –

L ∞ 

filtering problem has been considered for Takagi–Sugeno fuzzy 

neural networks with constant delay by using Wirtinger-type inte- 

gral inequalities and, in [11] , the exponential dissipative and l 2 –l ∞ 

filtering problems have been investigated for a class of discrete- 

time switched neural networks with constant delay. 
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Up to now, in spite of the fruitful results made on L 2 –L ∞ 

( l 2 –l ∞ 

) estimator/filter design for delayed dynamical systems (in- 

cluding delayed neural networks), it should be pointed out that the 

existing analysis approach remains conservative to some extent. 

Specifically, to ensure the L 2 –L ∞ 

( l 2 –l ∞ 

) performance requirement, 

the proposed Lyapunov–Krasovskii (L–K) functional is bounded by 

the simple term e T ( t ) Pe ( t ) and then one delay-independent LMI 

condition is induced. It is obvious that the time-delay terms have 

been completed neglected when bounding the L–K functional and 

the resulting conditions are conservative especially for the case of 

small delay. Therefore, it is more challenging to develop the less 

conservative approach to address the L 2 –L ∞ 

( l 2 –l ∞ 

) state estima- 

tion/filtering problem for delayed dynamical systems. 

This paper revisits the L 2 –L ∞ 

state estimation problem for a 

class of neural networks with time-varying transmission delay. 

Compared with the existing L 2 –L ∞ 

performance analysis approach, 

the time-delay terms are reserved in this paper when bounding 

the L–K functional and all induced conditions are delay-dependent 

to ensure the L 2 –L ∞ 

performance constraint. Finally, several nu- 

merical examples demonstrate the effectiveness of the novel analy- 

sis approach in reducing the conservatism. The main contributions 

of this paper are given as follows: (1) by utilizing the time-delay 

information sufficiently, a novel L 2 –L ∞ 

performance analysis ap- 

proach is proposed for the first time; and (2) under the proposed 

approach, the less conservative L 2 –L ∞ 

design conditions of state 

estimator are established for delayed neural networks. 

Notation. The superscript “T ” denotes the transpose of a ma- 

trix. R 

n represents the n -dimensional Euclidean space. L 2 [0, ∞ ) is 

the space of square integrable vector functions over an interval 

[0, ∞ ). P > 0 means that P is a real symmetric and positive defi- 

nite matrix. I denotes an identity matrix with proper dimension. 

The symmetric terms in a symmetric matrix are denoted by ∗. 

2. Problem formulation 

Consider the following neural network with n neurons and 

time-varying transmission delay: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x (t) = −Ax (t) + W 0 g(x (t)) + W 1 g(x (t − h (t))) 

+ J + B 1 ω(t) , 

y (t) = Cx (t) + Dx (t − h (t)) + B 2 ω(t) , 

z(t) = Hx (t) , 

(1) 

where x (t) = [ x 1 (t) , x 2 (t ) , . . . , x n (t )] T ∈ R 

n is the state vector 

of the neural network, y (t) ∈ R 

m is the network measure- 

ment, z(t) ∈ R 

p is the signal to be estimated, ω(t) ∈ R 

q de- 

notes the noise disturbances belonging to L 2 [0, ∞ ), g(x (t)) = 

[ g 1 (x 1 (t)) , g 2 (x 2 (t)) , . . . , g n (x n (t))] T ∈ R 

n represents the neuron 

activation function with g(0) = 0 , A = diag { a 1 , a 2 , . . . , a n } is a 

diagonal matrix with a i > 0 ( i = 1 , 2 , . . . , n ), and W 0 and W 1 

are the connection weight matrices, B 1 , B 2 , C, D and H are 

some given constant matrices with appropriate dimensions, and 

J = [ J 1 , J 2 , . . . , J n ] 
T ∈ R 

n is a constant input vector. 

In addition, the function h ( t ) denotes the time-varying trans- 

mission delay that satisfies 

0 ≤ h (t) ≤ h, ˙ h (t) ≤ μ, (2) 

where h > 0 and μ are some known scalars. 

Throughout this paper, we assume that the neuron activation 

function g ( x ) in delayed neural network (1) is bounded and satis- 

fies the following Lipschitz condition: 

| g i (x ) − g i (y ) | ≤ l i | x − y | , ∀ x, y ∈ R , i = 1 , 2 , . . . , n, (3) 

where l i ( i = 1 , 2 , . . . , n ) are known positive scalars. 

Under the assumption that the time delay τ ( t ) is available, we 

construct the following full-order state estimator: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ ˆ x (t) = −A ̂

 x (t) + W 0 g( ̂  x (t)) + W 1 g( ̂  x (t − h (t))) 

+ J + K[ y (t) − ˆ y (t)] , 

ˆ y (t) = C ̂  x (t) + D ̂

 x (t − h (t)) , 

ˆ z (t) = H ̂

 x (t) , 

(4) 

where ˆ x (t) ∈ R 

n is the estimator state, ˆ y (t) ∈ R 

m is the estimate 

of the measurement output, ˆ z (t) ∈ R 

p is the estimate of the signal 

z ( t ) and K is the estimator gain matrix. 

Denoting that e (t) � x (t) − ˆ x (t ) , ˜ z (t ) � z(t) − ˆ z (t ) and ϕ(t ) � 

g(x (t)) − g( ̂  x (t)) , and using (1) and (4) , we can obtain the follow- 

ing estimation error dynamics: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ e (t) = −(A + KC) e (t) − KDe (t − h (t)) 

+ W 0 ϕ(t) + W 1 ϕ(t − h (t)) 

+(B 1 − KB 2 ) ω(t) , 

˜ z (t) = He (t) . 

(5) 

Moreover, it can be seen from (3) that the nonlinear vector func- 

tion ϕ(t) = [ ϕ 1 (t) , ϕ 2 (t ) , . . . , ϕ n (t )] T in the error dynamics (5) sat- 

isfies the following condition: 

| ϕ i (t) | = | g i (x i (t)) − g i ( ̂  x i (t)) | ≤ l i | e i (t) | , 
i = 1 , 2 , . . . , n. (6) 

Before presenting our main results, it is necessary to introduce 

the following important lemmas and definition. 

Lemma 1. [33] Let an n × n matrix Z > 0, two scalars a and b satisfy- 

ing b > a and a vector function ρ(t) ∈ R 

n be given. If the integrations 

concerned are well defined, then the following two inequalities hold: 

(1) (b − a ) 

∫ b 

a 

ρT (s ) Zρ(s ) d s 

≥
(∫ b 

a 

ρ(s ) d s 

)T 

Z 

(∫ b 

a 

ρ(s ) d s 

)
, 

(2) 
(b 2 − a 2 ) 

2 

∫ −a 

−b 

∫ t 

t+ θ
ρT (s ) Zρ(s ) d s d θ

≥
(∫ −a 

−b 

∫ t 

t+ θ
ρ(s ) d s d θ

)T 

Z 

×
(∫ −a 

−b 

∫ t 

t+ θ
ρ(s ) d s d θ

)
(b > a ≥ 0) . 

Lemma 2. [32] For a given scalar α ∈ (0, 1), a given n × n ma- 

trix Z > 0 and two vectors ζ1 , ζ2 ∈ R 

n , define the function 	(α, Z) = 

1 
α ζ T 

1 Zζ1 + 

1 
1 −α ζ T 

2 Zζ2 . If there exists an n × n matrix M such that [
Z M 

M 

T Z 

]
> 0 , then the following inequality holds: 

min 

α∈ (0 , 1) 
	(α, Z) ≥

[
ζ1 

ζ2 

]T [
Z M 

M 

T Z 

][
ζ1 

ζ2 

]
. 

Definition 1. For a given scalar γ > 0, the error dynamics (5) is 

said to be asymptotically stable with an L 2 –L ∞ 

performance level 

γ if the error dynamics (5) with ω(t) = 0 is asymptotically stable 

and, under zero-initial conditions ( e (t) = 0 , t ∈ [ −h, 0] ), the error 

dynamics satisfies ‖ ̃ z (t) ‖ ∞ 

< γ ‖ ω(t) ‖ 2 for all nonzero ω( t ) ∈ L 2 [0, 

∞ ), where 

‖ ̃

 z (t) ‖ ∞ 

= sup 

t 

√ 

˜ z T (t) ̃ z (t) , 

‖ ω (t) ‖ 2 = 

√ ∫ + ∞ 

0 ω 

T (t) ω (t)d t . 
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