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a b s t r a c t 

Due to lack of scale change in orthogonal least square regression (OLSR), the scaling term is introduced to 

OLSR to build up a novel orthogonal least square regression with optimal scaling (OLSR-OS) problem in 

this paper. In addition, the proposed OLSR-OS problem is proven to be numerically better than the OLSR 

problem. In order to select relevant features under the proposed OLSR-OS problem, � 2, 1 -norm regulariza- 

tion is further introduced, such that row-sparse projection is achieved. Accordingly, a novel parameterized 

expansion balanced feature selection (PEB-FS) method is derived based on an extension balanced coun- 

terpart. Moreover, not only the convergence of the proposed PEB-FS method is provided but the optimal 

scaling can be automatically achieved as well. Consequently, the effectiveness and the superiority of the 

proposed PEB-FS method are verified both theoretically and experimentally. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Serving as a crucial problem for feature selection [1–3] , clas- 

sification [4,5] , and sparse representation [6–9] , ridge regression 

[10,11] has numerous applications in computer science and pattern 

recognition. In [12] , ridge regression is used for the knowledge- 

leveraged inductive transfer learning. In [13] , kernel ridge regres- 

sion is utilized to predict the internal bond strength in a medium 

density fiberboard process. 

To retain more statistical and structural properties, ridge regres- 

sion could be further restricted on the Stiefel manifold [14] as 

νm , c = { W ∈ R 

m ×c : W 

T W = I c } 
where the Stiefel manifold νm, c is a set of the orthogonal matrices 

W ∈ R 

m ×c with m ≥ c . 

Consequently, ridge regression changes into the orthogonal least 

square regression [15–17] . Admittedly, orthogonal least square re- 

gression performs statistically better than ridge regression does 

due to associated orthogonality. However, it becomes extremely 

difficult to achieve the closed form solution with the orthogonal 

constraint. To cope with this issue, orthogonal least square regres- 

sion is frequently related to the procrustes problem on the Stiefel 
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manifold [18] . Nonetheless, the procrustes problem has limited ap- 

plications, since it mainly admits square matrix as input. Thus, 

methods [19,20] for solving the orthogonal procrustes problem can 

not be directly utilized to solve the orthogonal least square regres- 

sion. Furthermore, the issue concerning the inflexibility of the sub- 

space, i.e., lack of scale change is inevitable in the orthogonal least 

square regression though the statistical structure of the data can 

be highly preserved during the dimensionality reduction. 

To address the defects previously mentioned, we introduce the 

scaling term to the orthogonal least square regression to construct 

a novel orthogonal least square regression with optimal scaling 

(OLSR-OS) problem, such that scale change is taken into considera- 

tion. Additionally, � 2, 1 -norm regularization is further introduced to 

the proposed OLSR-OS problem, such that relevant features can be 

selected efficiently under row-sparse projection. Moreover, an orig- 

inal parameterized expansion balanced feature selection (PEB-FS) 

method is derived to solve regularized OLSR-OS along with achiev- 

ing the optimal scaling automatically. Consequently, extensive ex- 

periments are performed to show the effectiveness and the supe- 

riority of the proposed PEB-FS method. 

This paper is organized as the following order. In Section 2 , 

we propose the OLSR-OS problem by revisiting the ridge regres- 

sion (RR) and the orthogonal least square regression (OLSR). In 

Section 3 , a novel PEB-FS method is derived to solve the pro- 

posed OLSR-OS problem with sparse-inducing regularization. Be- 

sides, convergence of the PEB-FS method is also provided. In 
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Fig. 1. OLSR versus the proposed OLSR-OS. 

Section 4 , the experiments are presented to show the superiority 

of our method. Eventually, Section 5 concludes the paper. 

Notations: 1 = (1 , 1 , . . . , 1) T ∈ R 

n ×1 . The � p -norm of vector v is 

defined as ‖ v ‖ p = ( 
∑ 

i | v i | p ) 
1 
p . Suppose w 

i is the i th row of ma- 

trix W = { w ij } ∈ R 

m ×c , then Frobenius norm is defined as ‖ W ‖ F = √ ∑ m 

i = 1 
∑ c 

j = 1 w 

2 
ij 

= 

√ ∑ m 

i = 1 ‖ w 

i ‖ 2 
2 

and the � 2, 1 -norm of matrix W is 

defined as ‖ W ‖ 2 , 1 = 

∑ m 

i = 1 
√ ∑ c 

j = 1 w 

2 
ij 

= 

∑ m 

i = 1 ‖ w 

i ‖ 2 . 

2. Orthogonal least square regression with optimal scaling 

Suppose the input data X ∈ R 

m ×n and associated binary label 

matrix Y ∈ R 

n ×c , where m is dimension number, n is data number, 

and c is class number, then ridge regression (RR) can be illustrated 

as the following form: 

min 

W , b 
‖ X 

T W + 1 b 

T − Y ‖ 

2 
F + λ‖ W ‖ 

2 
F (1) 

where λ ∈ R is the regularization parameter, W ∈ R 

m ×c is the sub- 

space and b ∈ R 

c ×1 
is the bias. 

To well preserve statistical properties of the input data and pre- 

vent tuning the regularization parameter λ, we further restrain RR 

in (1) on the Stiefel manifold. Thus, the orthogonal least square re- 

gression (OLSR) could be represented as 

min 

W 

T W = I c , b 
‖ X 

T W + 1 b 

T − Y ‖ 

2 
F . (2) 

Due to the orthogonal constraint W 

T W = I c , i.e., ‖ W ‖ 2 
F 

= c , 

OLSR in (2) has fixed scale for subspace W . To address the defect 

concerning lack of scale change as shown in Fig. 1 , the scaling term 

γ is introduced to OLSR in (2) , such that a novel orthogonal least 

square regression with optimal scaling (OLSR-OS) problem can be 

proposed as 

min 

W 

T W = I c , b ,γ
‖ X 

T (γ W ) + 1 b 

T − Y ‖ 

2 
F . (3) 

Apparently, the proposed OLSR-OS model in (3) should be bet- 

ter than OLSR model in (2) , since scaling γ is further taken into 

consideration. Moreover, it is interpreted both in Fig. 2 and in 

Theorem 2.1 that the proposed OLSR-OS in (3) is numerically bet- 

ter than OLSR in (2) . 

We will derive a novel parameterized expansion balanced 

method to solve the proposed OLSR-OS problem (3) with achiev- 

ing the optimal scaling automatically. 

Fig. 2. The comparison of the objective value is performed for OLSR-OS in (3) and 

OLSR in (2) via the proposed PEB-FS method ( λ = 0 ) under the same input data. 

Apparently, bias b is free from any constraint in Eq. (3) . By 

means of the extreme value condition w.r.t. b , we can derive that 

∂‖ γ X 

T W + 1 b 

T − Y ‖ 

2 
F 

∂b 

= 0 

⇒ 

∂ Tr (b 1 T 1 b 

T + 2 (γ X 

T W − Y ) T 1 b 

T ) 

∂b 

= 0 

⇒ b = 

1 

n 

(Y 

T 1 − γ W 

T X 1 ) . 

By substituting the above result as b = 

1 
n (Y 

T 1 − γ W 

T X 1 ) , the pro- 

posed OLSR-OS in (3) is reformulated into the centralized form: 

min 

W 

T W = I c ,γ

∥∥∥(
I n − 1 

n 

11 T 
)
(γ X 

T W − Y ) 

∥∥∥2 

F 
. (4) 

Accordingly, Eq. (4) can be further expanded into the following 

parameterized quadratic problem with orthogonal constraint: 

min 

W 

T W = I c ,γ
Tr (γ 2 W 

T AW − 2 γ W 

T B ) (5) 

where A = X (I n − 1 
n 11 T ) X 

T ∈ R 

m ×m and B = X (I n − 1 
n 11 T ) Y ∈ 

R 

m ×c . 

Based on Eq. (5) , we have the following theorem to illustrate 

that the proposed OLSR-OS in (3) is numerically better than OLSR 

in (2) . 
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