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a b s t r a c t 

As a novel framework of clustering analysis, penalized clustering is able to learn the number of clusters 

automatically, and therefore has aroused widespread interest recently. To address the computational dif- 

ficulties arising from the nonsmoothness of the penalty, a simple iterative algorithm based on smoothing 

trust region (STR) can be used. However, since STR only needs first-order information of the model, it 

might exhibit slow convergence rate sometimes. To accelerate STR and further improve the efficiency of 

penalized clustering, we propose a nonmonotone smoothing trust region (NSTR) algorithm, in which non- 

monotone technique and the Barzilai and Borwein (BB) method are utilized together. We also prove that 

the new algorithm is globally convergent and estimate its worst case computational complexity. Exper- 

imental results on both simulated and real-life data sets validate the effectiveness and efficiency of the 

proposed method. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Cluster analysis is the process of partitioning a given set of data 

objects into different subsets based on some common properties 

of the data objects. Each subset is a cluster, such that points in a 

cluster are similar to one another, yet dissimilar to points in other 

clusters. It has been widely used in data mining, business intelli- 

gence, biological engineering, image processing, and social network 

[1–3] . A wide variety of clustering approaches have been proposed 

so far, including k-means, hierarchical clustering, spectral cluster- 

ing and their variants [4–11] . Most of these clustering methods as- 

sume that the number of clusters is given beforehand. However, 

clustering is an unsupervised learning task, and estimating the 

number of clusters becomes a challenging problem in clustering 

analysis. 

Recently, a novel framework for cluster analysis has been pro- 

posed [12–17] , we call it as penalized clustering. In penalized clus- 

tering methods, the number of clusters can be learned from the 

training data automatically, rather than being required as a param- 

eter. Let { x i } n i =1 
be a set of observations, μi represents the cluster 

centroid that covers x i , where both x i and μi are q -dimensional 

vectors. A general model of penalized clustering can be written in 
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the following formulation: 

min { μi } n i =1 

1 

2 

n ∑ 

i =1 

L (x i − μi ) + λ
∑ 

i< j 

R (μi − μ j ) , 

where the first term is a data fitting term, in which L ( ·) is a loss 

function that minimizes the distance between the observations and 

their corresponding centroids. The second term is a penalty term, 

in which R ( ·) is a regularization function that groups the close cen- 

troids together. λ> 0 is the model parameter that balances these 

two terms. In penalized clustering, the selection of regularization 

function R ( ·) directly affects the sparseness of centroids and the 

clustering results. In [12–14] , the � p -norm ( p ≥ 1) based penalties 

are considered. These penalties are all formulated as convex. Since 

using a convex penalty may yield severely biased estimates, Pan 

et al. [15] suggested to utilize nonconvex penalties. Since then, pe- 

nalized clustering methods with nonconvex penalties appeared in 

succession [16,17] . The penalties used by these methods include: 

the truncated lasso penalty(TLP) [18] , the minimax concave penalty 

[19] and the � p (0 < p < 1) based penalty [17] . 

Solving the nonsmooth penalized clustering model may en- 

counter some difficulties. One of the key difficulties is the pres- 

ence of the nonsmooth penalty in its objective. Another difficulty 

is the inherent large-scale nature of the clustering problems. This 

renders the task of building fast and simple methods. In [17] , we 

proposed an iterative algorithm based on smoothing trust region 

for � p -based penalized clustering and achieved good results. In this 
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paper, we would like to extend this method to all the nonsmooth 

penalized clustering model. Noticing that the algorithm in [17] is 

designed to solve large-scale problems, only first-order information 

is used and the algorithm might exhibit slow convergence rate. 

Therefore, a natural question is how to devise schemes that remain 

simple, but can exhibit much better performance. 

Many accelerated strategies for the first-order methods are pre- 

sented in the literature. In 1983, Nesterov [20] presented an ac- 

celerated gradient method for solving a class of convex program- 

mings. Nestrerov showed that, by this algorithm, the number of 

iterations to find a solution can be bounded by O (1 / 
√ 

ε) . This algo- 

rithm is shown to be the optimal among all methods having only 

first-order information at consecutive iterates [21] . Nesterov’s ac- 

celerated gradient method has attracted much interest due to the 

increasing need to solve large-scale convex programming problems 

by using fast first-order method. Based on the presentation of Nes- 

terov’s method, fast gradient methods have been generalized and 

extended, see [21–28] , for details. However, these methods are only 

applicable to convex situations. Because the regularization term in 

nonsmooth penalized clustering model may be nonconvex, Nes- 

terov’s acceleration strategies are not suitable for our problem. 

The BB method, proposed by Barzilai and Borwein in [29] , is 

another common used acceleration strategy. It often requires less 

computational work and speeds up the convergence greatly. The 

BB method together with the nonmonotone strategies does not re- 

quire the problem to be convex, and can be applied to the noncon- 

vex situation. Therefore, we plan to use the BB method to acceler- 

ate the STR algorithm. The BB method requires fewer storage space 

and very inexpensive computations. Consequently, the BB method 

has been generalized in many occasions. In [30] , Raydan proposed 

an efficient global Barzilai and Borwein algorithm for large scale 

unconstrained optimization problems. The algorithm is combined 

with the traditional nonmonotone line search proposed by Grippo 

et al. [31] and further extended by Birgin et al. [32] . In [32] , a non- 

monotone projected gradient method is proposed for minimizing 

the differentiable functions on closed convex sets. [33] studied pro- 

jected Barzilai–Borwein methods for large-scale box-constrained 

quadratic programming. In [34] , Dai et al. developed a cyclic ver- 

sion of the Barzailai–Borwein gradient type method, which proves 

to have a better performance than the standard BB in many cases. 

More theoretical analysis, generalizations and variants of the BB 

method can be seen in [34–38] and the references therein. 

The contributions of this paper are as follows. 

• We propose a fast algorithm for nonsmooth penalized cluster- 

ing problem. Smoothing trust region (STR) is utilized to handle 

the nonsmoothness of the regularization term. A nonmonotone 

smoothing trust region (NSTR) algorithm, in which the BB step 

and the nonmonotone technique are utilized together, is pro- 

posed to further accelerate the STR algorithm. 

• We prove that the NSTR algorithm is globally convergent in the- 

ory and also estimate the worst case iteration complexity at the 

same time. 

• Experiments are carried out on both synthetic and real-world 

data sets. Comparisons to several state-of-the-art clustering 

methods validate the effectiveness of both STR and NSTR. Com- 

parison between STR and NSTR shows that NSTR is much faster 

than STR. 

The paper is organized as follows. In the next section, some 

related works about smoothing approximation and trust region 

method are given. In Section 3 , the new nonmonotone smooth- 

ing trust region method for nonsmooth penalized clustering is 

presented. In Section 4 , we discuss the properties of this new algo- 

rithm, present its convergence and computational complexity anal- 

ysis. Numerical studies are given in Section 5 . Some conclusions 

are given in the last section. 

2. Related work 

2.1. Smoothing approximation 

Smoothing approximation is one of the most effective ways 

to solve nonsmooth optimizations. The main idea of smoothing 

method is to use a sequence of parameterized smooth functions to 

approximate the original nonsmooth function. The smoothing func- 

tion could be defined as follows: 

Definition 1 [39] . Let f : � 

n → � be a continuous function. ˜ f : � 

n ×
� + → � is called a smoothing function of f , if ˜ f ν (·) is continu- 

ously differentiable in � 

n for any fixed ν > 0, and for any x ∈ � 

n , 

lim 

z→ x,ν↓ 0 
˜ f ν (z) = f (x ) . 

The smoothing methods have been studied for decades [39–45] . 

Chen and Mangasarian [46] conduct a class of smooth approxi- 

mations of the function (t) + by convolution. Let ρ : R → R + be a 

piecewise continuous density function satisfying 

ρ(s ) = ρ(−s ) κ := 

∫ ∞ 

−∞ 

| s | ρ(s ) ds < ∞ . 

Then 

φ(t, ν) := 

∫ ∞ 

−∞ 

(t − νs ) + ρ(s ) ds, 

from R × R + → R + is well defined. φ is a smoothing function of 

(t) + by Definition 1 . Because many nonsmooth optimization prob- 

lems can be reformulated by using the plus function (t) + , the 

smooth approximations of these nonsmooth functions and their 

compositions can be defined by choosing a smooth approximation 

of (t + ) . The framework of the smoothing method is presented in 

Algorithm 1 . 

Algorithm 1 The framework of smoothing method. 

1: Initialization Given smoothing parameter ν0 , ˜ ε and corre- 

sponding constants, set k = 0 . 

2: while νk ≥ ˜ ε do 

3: Construct and solve the smoothing subproblem min 

˜ f νk 
(μ) , 

4: Update smoothing parameter νk according to some criterion, 

5: k = k + 1 , 

6: end while 

2.2. Trust region method 

In smoothing method, we need to solve a series of smooth sub- 

problems with the given smoothing parameter ν . The trust region 

method is a popular choice to solve these smoothing subproblems 

[47] . It generates steps with the help of a quadratic model of the 

objective function in a region around the current iterate, 

	k = { μ : ‖ μ − μk ‖ ≤ 
k } , 
where 
k is the radius of 	k . The model is trusted to be adequate 

to the objective function in 	k , and a step to be the (approximate) 

minimizer of the quadratic model in trust region is chosen. The se- 

lected step is tested by some rules, if the step is acceptable, it is 

taken as the next iterate. If the step is not acceptable, it reduces 

the radius of trust region and finds a new minimizer. Different 

from the traditional line search method, the direction and length 

of the step are selected simultaneously. The framework of trust re- 

gion is described in Algorithm 2 . More details can be found in the 

monographs of [47,48] . 
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