
Neurocomputing 272 (2018) 10–16

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Artificial neural networks used in optimization problems

Gabriel Villarrubia, Juan F. De Paz

∗, Pablo Chamoso, Fernando De la Prieta

University of Salamanca, BISITE Research Group, Edificio I + D + I, 37007, Salamanca, Spain

a r t i c l e i n f o

Article history:

Received 28 October 2016

Revised 11 March 2017

Accepted 3 April 2017

Available online 23 June 2017

Keywords:

Neural networks

Optimization problems

Non-linear optimization

a b s t r a c t

Optimization problems often require the use of optimization methods that permit the minimization or

maximization of certain objective functions. Occasionally, the problems that must be optimized are not

linear or polynomial; they cannot be precisely resolved, and they must be approximated. In these cases,

it is necessary to apply heuristics, which are able to resolve these kinds of problems. Some algorithms

linearize the restrictions and objective functions at a specific point of the space by applying derivatives

and partial derivatives for some cases, while in other cases evolutionary algorithms are used to approxi-

mate the solution. This work proposes the use of artificial neural networks to approximate the objective

function in optimization problems to make it possible to apply other techniques to resolve the problem.

The objective function is approximated by a non-linear regression that can be used to resolve an opti-

mization problem. The derivate of the new objective function should be polynomial so that the solution

of the optimization problem can be calculated.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Optimization problems are an important part of soft computing,

and have been applied to different fields such as smart grids [1] ,

logistics [2,3] , resources [4] or sensor networks [5] . Such problems

are characterized by the presence of one or more objective max-

imizing or minimizing functions [5] and various restrictions that

must be met so that the solution is valid. The problems are easy

to resolve when we are working with linear restrictions and objec-

tive functions because there are methods to obtain the optimal so-

lution. However, in the case of non-linear restrictions or objective

functions, it may be necessary to use heuristics [2,5] to obtain a

pseudo-optimal solution. The management of heuristic solutions is

continually evolving, which is precisely why we are looking for al-

ternatives to problems in which it is not feasible to find an optimal

solution. When working with linear restrictions and objective func-

tions, optimization problems can be resolved with algorithms such

as the Simplex [6] , which limits the study of this type of problem.

Certain non-linear problems can be optimally resolved by using al-

gorithms such as Lagrange multipliers or Kuhn–Tucker conditions

[7] . In many cases, it is not possible to resolve a problem with La-

grange multipliers because the generated system of equations can-

not be resolved without resorting to numerical methods, which

would prevent a direct approach to resolving the problem. In other

cases, the Kuhn–Tucker conditions are not met. There is a broad

∗ Corresponding author.

E-mail addresses: gvg@usal.es (G. Villarrubia), fcofds@usal.es , fcofds@gmail.com

(J.F. De Paz), chamoso@usal.es (P. Chamoso), fer@usal.es (F.D. la Prieta).

range of opportunities to study optimization problems that can-

not be solved with an exact algorithm. These problems are usually

solved by applying a heuristics and metaheuristics solution such as

genetic algorithms [8] , particle swarm optimization [9] , Simulated

annealing [10] , ant colony optimization [11] etc.

This work proposes the use of neural networks such as heuris-

tics to resolve optimization problems in those cases where the use

of linear programming or Lagrange multipliers is not feasible. To

resolve these problems a multilayer perceptron is applied to ap-

proximate the objective functions; the same process could be fol-

lowed in the restrictions. The proposal establishes the activation

function to be used and the criteria to conduct the training us-

ing a dataset according to the defined domain of the variables.

This process makes it possible to transform objective functions into

other functions, which can then be applied to resolve optimization

problems that can be resolved without metaheuristics. The objec-

tive function is approximated with a non-linear regression with

the objective to obtain a new function that facilitates the solution

of the optimization problem. The activation function of the neural

network must be selected so that the derivate of the transformed

objective functions should be polynomial. Once the new objective

functions has been calculated the problem can be resolved with

other techniques. The same process can be applied to non-equality

restrictions, but it is necessary to introduce gaps to satisfy the re-

strictions.

This paper is organized as follows: Section 2 revises re-

lated works, Section 3 describes the proposal, and finally Section

4 shows the results and conclusions obtained.

http://dx.doi.org/10.1016/j.neucom.2017.04.075

0925-2312/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.neucom.2017.04.075
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.04.075&domain=pdf
mailto:gvg@usal.es
mailto:fcofds@usal.es
mailto:fcofds@gmail.com
mailto:chamoso@usal.es
mailto:fer@usal.es
http://dx.doi.org/10.1016/j.neucom.2017.04.075

G. Villarrubia et al. / Neurocomputing 272 (2018) 10–16 11

2. Heuristics applied to optimization

On certain occasions, optimization problems cannot be solved

by applying methods such as Simplex or Lagrange. Methods such

as Simplex are applicable only when problems are linear, so the

algorithm cannot be properly applied when the objective function

or constraints are nonlinear. Lagrange makes it possible to resolve

optimization problems even when problems are not linear, but it

is not always possible to resolve the equations after applying La-

grange. When exact algorithms do not allow obtaining an optimal

solution, it is necessary to apply heuristics and metaheuristics al-

gorithms. Some heuristics, such as ant colony optimization, are ori-

ented to resolve optimization problems in graphs [12] , although

they can be applied in other optimization fields such as control

processes [13] . The authors in this study [13] applied fuzzy logic in

a nonlinear process to improve the efficiency in the learning pro-

cess with regard to execution time. Other alternatives such as sim-

ulated annealing or PSO (Particle Swarm Optimization) are com-

monly applied in optimization functions. In general, several evolu-

tional algorithms can be applied to resolve optimization problems,

as seen in various studies [9,13] .

In mathematics, there are heuristics methods that work with

approximation functions. Approximation functions are usually de-

fined around a point, which would make it possible to use poly-

nomials to approximate functions by applying the Taylor theorem.

Based on this idea, it would be possible to solve non-linear op-

timization problems by applying Taylor nonlinear functions. This

idea has been applied in algorithms such as Frank-Wolfe [14] ,

which allows linearizing objective functions by applying deriva-

tives in a point to calculate the straight line, plane or hyperplane

crosses through that point. The solutions are calculated iteratively

with a new hyperplane for each iteration. MAP (Method of Approx-

imation Programming) is a generalization of the Frank-Wolfe algo-

rithm, which permits linearizing the restrictions.

This work proposes carrying out this approximation in a more

generic manner, making it possible to solve the problem without

needing to calculate a new approximation for each tentative solu-

tion. We propose to do so by applying neural networks.

3. Proposal

Komogorov’s theorem says that a multilayer perceptron with 3

layers makes it possible to precisely define any continuous func-

tion. However, for the approximation to be exact, it is necessary to

define an activation function and parameters for which there are

no calculation procedures. It is not possible to apply just any ac-

tivation function, because we must take into account the objective

of the functions to simplify the problem.

The proposal to solve an optimization problem is explained in

Fig. 1 . The system generates a dataset in the domain of the vari-

ables to train a neural network. The objective function of the opti-

mization problem is redefined with the multilayer perceptron that

transforms the function, making it possible to generate a polyno-

mial equation to resolve the optimization problem. Finally, when

the new objective function is calculated another solution can be

applied to resolve the problem.

To define a neural network, it is necessary to establish param-

eters, such as the connections, number of layers, activation func-

tions, propagation rules etc. In the case of the multilayer percep-

tron, we need to consider its two different stages: the learning

stage, and the prediction process. In both stages, the number of

layers and activation functions have to be the same. In the predic-

tion stage, other parameters such as the learning rate or the mo-

mentum are not relevant. In the case of the multilayer perceptron,

the propagation rule is the weighted sum, and it is defined accord-

Objec�ve func�on

−10 −5 5 10

−1.5

−1.0

−0.5

0.5

1.0

1.5

Arctan ac�va�on
func�on

noitcnuf evitcejbo selbairaV

Output objec�ve func�on

Generate data in the domain of the
variables

Train the neural network

Resolve the op�miza�on problem with
the new objec�ve func�on

New objec�ve func�on

Fig. 1. Workflow optimization problem.

ing to (1).

n ∑

i =1

w i j x i (t) (1)

Where w ij is the weight that connects neuron i in the input

layer with neuron j in the hidden layer, x i is the output from neu-

ron i in the input layer, n is the number of neurons in the input

layers, and t is the pattern.

In case of having bias in the neuron, the result would be what

is shown in (2).

n ∑

i =1

w i j x i (t) + θ j (2)

After calculating the propagation rules, we should apply the ac-

tivation function. If the activation function is linear, we would have

an output of neuron j that would be a linear combination of the

neurons in the input layer and, consequently, y j would be a linear

function. Therefore, if the activation function is the identity, the

net output would correspond to the output of the neuron.

So, if neuron k in the output layer also has the activation func-

tion f , the output would be defined as (3).

y j (t) = f

(

n ∑

i =1

w i j x i (t) + θ j

)

(3)

Bearing in mind that the multilayer perceptron has three layers,

it is necessary to apply the propagation rule on two occasions in

order to transmit the value in the input layer to the neuros in the

output layer (4).

y k (t) =

m ∑

j=1

w jk y i (t) + θk (4)

Where k represents neuron k in the output layer, and m is the

number of neurons in the hidden layer.

Download English Version:

https://daneshyari.com/en/article/6865223

Download Persian Version:

https://daneshyari.com/article/6865223

Daneshyari.com

https://daneshyari.com/en/article/6865223
https://daneshyari.com/article/6865223
https://daneshyari.com

