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a b s t r a c t 

This research is concerned with the problem of obstacle avoidance for the underactuated unmanned ma- 

rine vessel under unknown environmental disturbance. A concise deep reinforcement learning obstacle 

avoidance (CDRLOA) algorithm is proposed with the powerful deep Q-networks architecture to overcome 

the usability issue caused by the complicated control law in the traditional analytic approach. Further- 

more, a comprehensive reward function is specifically designed for obstacle avoidance, target approach- 

ing, speed modification, and attitude correction. Compared to the analytic methods, the proposed algo- 

rithm based on reinforcement learning shows notable advantages in utility and extendibility. With the 

same CDRLOA system, the targets and the constraints are highly customizable for various of special re- 

quirements. Extensive experiments conducted have demonstrated the effectiveness and conciseness of 

the proposed algorithm. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

The application of the autonomous maritime system is becom- 

ing more and more prevalent due to its flexibility and versatility 

both in the civil and military field. For all kinds of application 

scenarios, it is of extreme importance to avoid obstacles such as 

rocks, floaters, debris and other ships. For the autonomous mar- 

itime vessels, the obstacle detection, information fusion, avoidance 

algorithm and the control strategy must be located onboard ves- 

sels. Consequently, the major challenge is the realization of real- 

time obstacle avoidance control strategy. Therefore, the applica- 

ble decision-making operator has an essential role in autonomous 

navigation and obstacle avoidance. Many positive results on this 

topic have been reported in the literature and readers are referred 

to the papers [1,2] . Lisowski and Smierzchalski [3] first applied 

the mathematical algorithm on the ship’s dynamic mathematical 

model (static, kinetic, dynamic and matrix models) by generating 

a sequence of maneuvers. 

However, mathematical algorithms have their particular limi- 

tations, and the avoidance performance intrinsically depends on 

the fine-grained models of obstacles and the dynamics of vessels. 

The slight changes of obstacles and the disturbance of the envi- 

ronment may lead to model’s failure. Moreover, as the maritime 

system complexity increase, the mathematical algorithms become 
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harder to design and deploy. In all the study as mentioned ear- 

lier of obstacles avoidance, there exist three main issues to be re- 

solved: (1) The algorithms’ ability to deal with the complex dy- 

namic system is limited. Traditional mathematical algorithms are 

feeble to the changes and uncertainty of systems, while the weak 

representation capacity is the major flaw of traditional reinforce- 

ment learning approaches. (2) The control law obtained by most 

mathematical algorithms is formed as complicated formulas, while 

they are often too complicated to be deployed in practical applica- 

tions. (3) The previous architectures are designed to accommodate 

some specified situations. Consequently, these approaches are not 

interoperable and portable for diverse and complex navigation re- 

quirements. 

On the other side, the recent development of artificial intel- 

ligence area [4,5] has profound effects on the industrial world, 

which brings researchers powerful algorithms to characterize and 

control the extremely complex system under the changing envi- 

ronment. The ancient game of Go has long been viewed as the 

most difficult and challenging classic game, while the strategy of 

Go players can also be considered as the output of a controlled 

system with high complexity. David Silver and Aja Huang [6] man- 

aged to design a group of deep neural networks known as AlphaGo 

that are trained by the deep reinforcement learning (DRL) from 

games of self-play to beat human Go champions. Comparing with 

prior knowledge based traditional algorithms, DRL is with greater 

capacity to adapt complex system environment while it is capa- 

ble of self-learning. Positive results in [7] have demonstrated that 

the successful control policies can be learned directly from DRL on 

http://dx.doi.org/10.1016/j.neucom.2017.06.066 

0925-2312/© 2017 Published by Elsevier B.V. 

Please cite this article as: Y. Cheng, W. Zhang, Concise deep reinforcement learning obstacle avoidance for underactuated unmanned 

marine vessels, Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom.2017.0 6.0 6 6 

http://dx.doi.org/10.1016/j.neucom.2017.06.066
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:wdzhang@sjtu.edu.cn
mailto:ycheng_mit@sjtu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2017.06.066
http://dx.doi.org/10.1016/j.neucom.2017.06.066


2 Y. Cheng, W. Zhang / Neurocomputing 0 0 0 (2017) 1–11 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; July 6, 2017;21:54 ] 

challenging classic games under various scenarios. Besides, tradi- 

tional reinforcement learning approaches have been applied in the 

autonomous movement of the four-wheeled robot [8] . After lots of 

self-learning processes, the robot car had succeeded in navigating 

in the environment with multiple obstacles. Fathinezhad and Der- 

hami [9] proposed supervised fuzzy sarsa method for robot naviga- 

tion by utilizing the advantages of both supervised and reinforce- 

ment learning algorithms. 

Motivated by all of these theories and realistic reasons, this 

paper focuses on the field of advanced artificial intelligence ap- 

proaches, e.g. deep learning architectures, reinforcement learn- 

ing algorithms. A concise autonomous obstacles avoidance sys- 

tem, which is implemented by avoidance reward algorithm and 

deep reinforcement learning approach, is proposed for the com- 

plex unmanned marine vessels with unknown dynamics, taking 

autonomous surface vessels (ASVs) as the cases. The main contri- 

butions of this work can be summarized as follows: 

(1) A concise deep reinforcement learning obstacles avoidance 

(CDRLOA) system is developed to deal with the complex naviga- 

tion situations and the unknown dynamics of the environment. 

Combining the proposed avoidance reward algorithm and deep 

reinforcement learning (DRL) approach, CDRLOA system improves 

its controller with the self-play process. By applying the con- 

cise control strategies learned from the system, vessels are able 

to reach the target through highly simplified control instructions 

while avoiding the collision. 

(2) Corroborating the effectiveness of the proposed algorithm 

with the obstacles avoidance navigation tasks, which consist of ob- 

stacles scattered within the domain, the destination to be reached, 

and the standard ASV with unknown environmental dynamics. The 

experiments have achieved satisfying results and shown the con- 

ciseness of the control strategies learned from CDRLOA system. 

2. System description and preliminaries 

2.1. Preliminaries 

Throughout the paper, | ·| denotes the absolute value for a scalar 

variable or the members of a specific set. E denotes the expecta- 

tion operator, and V denotes the variation operator. ( ̃ ·) is the esti- 

mation of ( ·) and δ( ·) is the Dirac function [10] . The case study of 

obstacles avoidance takes ASVs as the example. The horizontal mo- 

tion of a surface vessel is unusually described by the motion com- 

ponents in surge, sway, and yaw [11] . Based on this, υ = [ u, v , r ] T ∈ 

R 

3 and η = [ x, y, ψ ] 
T ∈ R 

3 are chosen as the velocity vector and 

position vector. Among these, ( ψ) is the heading of the vessel and 

( x, y ) is the position in the earth-fixed inertial frame. The linear 

velocities υ = [ u, v , r ] T correspond to surge and sway, and for yaw 

in the body-fixed frame of vessel. r 0 is the obstacle detection ra- 

dius. Fig. 1 illustrates the major concepts of the movement process 

in this case. The nonlinear dynamic equations of motion [12] can 

be expressed as: 

˙ η = R ( ψ ) υ
M ̇  υ = τ − C ( υ) υ − D ( υ) υ − g ( υ) + τw 

(1) 

where R ( ·) is the 3 DOF rotation matrix for the horizontal motion 

of ASV. This matrix has the properties that R ( ψ ) 
T 
R ( ψ ) = I and 

‖ R ( ψ ) ‖ = 1 for all ψ . Generally, d 
dt 

{ R ( ψ ) } = 

˙ ψ R ( ψ ) S, where 

J ( η) 
3 DOF = R ( ψ ) = 

[ 

cos ψ − sin ψ 0 

sin ψ cos ψ 0 

0 0 1 

] 

, S 

3 DOF = 

[ 

0 −1 0 

1 0 0 

0 0 0 

] 

(2) 

Fig. 1. Major components of the autonomous underactuated vessel. 

The system inertia matrix M = M 

T = M A + M RB > 0 is the com- 

bination of added mass matrix M A and rigid-body matrix M RB : 

M A = 

[ −X ˙ u 0 0 

0 −Y ˙ v −Y ˙ r 
0 −Y ˙ r −N ˙ r 

] 

, M RB = 

[ 

m 0 0 

0 m m x g 
0 m x g I z 

] 

(3) 

Similarly, the skew-symmetric matrix C ( υ) = −C ( υ) T of Coriolis 

and centripetal terms are also consisted of two parts: 

C ( υ) = 

[ 

0 0 c 13 ( υ) 
0 0 c 23 ( υ) 

−c 13 ( υ) −c 23 ( υ) 0 

] 

= C A ( υ) + C RB ( υ) (4) 

C A ( υ) = 

[ 

0 0 Y ˙ v v + Y ˙ r r 
0 0 −X ˙ u u 

−Y ˙ v v X ˙ u u 0 

] 

(5) 

C RB ( υ) = 

[ 

0 0 −m ( x g r + v ) 
0 0 mu 

m ( x g r + v ) −mu 0 

] 

(6) 

D ( υ) is the nonlinear damping matrix for the system inertia 

D ( υ) = 

[ 

d 11 ( υ) 0 0 

0 d 22 ( υ) d 23 ( υ) 
0 d 32 ( υ) d 33 ( υ) 

] 

(7) 

with 

d 11 ( υ) = −X u − X | u | u | u | − X uuu u 

2 

d 22 ( υ) = −Y v − Y | v | v | v | − Y | r | v | r | 
d 23 ( υ) = −Y r − Y | v | r | v | − Y | r | r | r | 
d 32 ( υ) = −N v − N | v | v | v | − N | r | v | r | 
d 33 ( υ) = −N r − N | v | r | v | − N | r | r | r | (8) 

The coefficients [{ X ( ·) , Y ( ·) , N ( ·) } are the so-called hydrodynamic 

derivatives that represent the hydrodynamic forces and moments 

acting on the vessel. g ( υ) = [ g u , g v , g r ] 
T ∈ R 

3 indicates the unmod- 

eled dynamics. 

The control input vector τ denotes the propulsion surge force 

and the yaw moment, which is given by 

τ = 

[
τu 0 τr 

]T ∈ R 

3 (9) 

To further complicate the requirements, an underactuated ves- 

sel is under consideration. As can be observed in the propulsion 

force and moment vector τ , the independent actuators for the 

sway control are unnecessary. Accordingly, this vessel has more ex- 

tensive applicability and fewer requirements for hardware. The dis- 

turbance from the environment can be represented by the vector 
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