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a b s t r a c t 

We propose a Lyapunov theory based linguistic reinforcement learning (RL) framework for stable tracking 

control of robotic manipulators. In particular, we employ Lyapunov theory to constrain fuzzy rule conse- 

quents for ensuring stability of the designed controller. Proposed fuzzy RL controller employs Lyapunov 

theory dictated rules for discovering an optimal yet stable control strategy for robotic manipulators. Fur- 

thermore, our proposed linguistic RL controller handles payload variations and external disturbances quite 

effectively. We validate linguistic Lyapunov RL controller on two benchmark control problems: (i) a stan- 

dard two-link robotic arm manipulator, and (ii) a two link selective compliance assembly robotic arm 

(SCARA). Simulation results and comparison against (a) baseline fuzzy Q learning (FQL) controller, and 

(b) a recently proposed Lyapunov theory based Markov game controller showcases our controller’s supe- 

rior tracking performance and lower computational complexity. Furthermore, our controller exhibits high 

stability with disturbances and payload variations. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Controlling robot manipulators is an extremely challenging and 

complex control problem due to their highly nonlinear and cou- 

pled dynamics. Flawless modeling of robotic manipulators is an 

equally daunting task; forcing the designer to make idealizing as- 

sumptions with consequent modeling errors. This has prompted 

designers to go for model free approaches. RL has emerged as an 

alternative technique to design high performance controllers for 

robot manipulators [1] . However most of the RL approaches pro- 

posed so for do not guarantee any stability on the designed con- 

troller [2] . Lyapunov theory [3,4] offers a powerful platform for de- 

signing controllers that are guaranteed to be stable and can handle 

model uncertainties and parameter variations. Recently, in [3] au- 

thors have introduced stability in the RL paradigm by hybridiz- 

ing Lyapunov theory into the RL action generation mechanism. 

The approach is excellent but has one drawback of higher com- 

putational complexity as one is required to solve one linear pro- 

gram (LP) per iteration to arrive at an optimal solution. Other ap- 

proaches [5,6] that have tried to infuse stability in the RL domain 

via Lyapunov theory advocate an actor-critic (AC) formulation. In 

an AC formulation we, typically have two function approximators; 
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one critic which approximates value function and an actor to ap- 

proximate optimal policy. A major hurdle here is the simultaneous 

training of two networks and difficulty in convergence to the op- 

timal solution. In contrast, we seek to guarantee stability of our 

controller by what may be called a “linguistic Lyapunov control”. 

In our approach, we use linguistic RL (wherein rule consequents 

are linguistic rather than crisp). These rules are Lyapunov con- 

strained so as to impart stability to the designed controller. In our 

previous works, we have attempted at designing stable RL con- 

trollers by: (i) generating a hybrid controller by mixing Lyapunov 

theory based action with RL action [3] and (ii) curtailing the action 

set of the RL controller so as to satisfy Lyapunov conditions [4] . In 

this work, we take a conceptually different approach as: (a) we for- 

mulate “learning with words” or a linguistic RL approach where we 

frame linguistic fuzzy RL rules for learning optimal solution, and 

(b) we impose Lyapunov constraints on these linguistic RL rules or 

design a Lyapunov linguistic RL controller. This linguistic Lyapunov 

framework is then carefully fine-tuned for application on robotic 

manipulators. 

Next, we look at some recently proposed soft computing ap- 

proaches that have used Lyapunov theory for lending stability to 

the controller. In [7] , authors have proposed neural networks based 

consensus control for multiple robotic manipulators systems and 

used Lyapunov theory to tune the NN weights for stability. In [8] , 

Lyapunov theory has been used to design an adaptive neural con- 

troller for redundant robot manipulators constrained by mobile ob- 

stacles. Li et al. [9] propose an RL approach to coordinated manip- 
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ulation of multi robots to cope with unknown dynamics of robots 

and manipulated object. These approaches use NNs (at times two 

NNs in an actor critic RL formulation) which poses problems in 

terms of slow convergence and/ or divergence and high computa- 

tional burden when the system complexity increases. In another 

approach [10] , Lyapunov theory has been used to develop a con- 

current learning implementation of model based RL for approxi- 

mate optimal regulation. The approach relies on availability of a 

sufficiently accurate system model which is a restrictive pre con- 

dition. Our approach, in contrast, proposes a model free linguistic 

Lyapunov RL controller with no divergence issues and offers scala- 

bility to high dimensional non-linear systems. 

In implementing RL control on continuous state action space 

problems such as the manipulator control, use of function approx- 

imators becomes a necessity to counter the “curse of dimension- 

ality”. We have used fuzzy inference system (FIS) as function ap- 

proximator as in [3] , but our approach has two distinct advantages 

vis a vis these approaches: (i) we have used only one function 

approximator unlike the AC based RL approaches [5,6] making it 

simple and convergence to the optimal solution is fast. In an AC 

RL setup simultaneous training of two function approximator is re- 

quired, and (ii) it has lower computational complexity than Markov 

game based approach [1,3] where a linear program must be solved 

at each iteration to generate optimal solution. This makes our ap- 

proach suitable for high dimensional problems as scalability is very 

easy. 

In a recent survey [11] , authors have detailed several neural 

networks (NN) and fuzzy logic based controllers. Some recent NN 

based RL controllers have also been described that employ two 

NNs in an actor critic (AC) configuration. However, there are two 

major concerns in an AC formulation: (i) Simultaneous training 

and ensuring convergence of actor and critic NNs is difficult and 

at times tricky, and (ii) severe computational burden due to large 

number of tunable parameters. In contrast, our proposed approach 

has fewer tunable parameters and employs a single function ap- 

proximator leading to faster convergence. 

An adaptive fuzzy controller for an exoskeleton robot is pre- 

sented in [12] wherein fuzzy logic has been employed to approx- 

imate nonlinear dynamics of the manipulator. However, our ap- 

proach is different from this approach [12] in two aspects: (i) in 

[12] , fuzzy logic has been used to approximate the manipulator 

parameters whereas we use FIS as a function approximator for es- 

timating the linguistic Q function, and (ii) Our approach is an RL 

approach wherein quadratic error signal is used to modify the q 

values for optimal trajectory tracking. Moreover our implementa- 

tion is simpler as we use only one FIS with linguistic consequents. 

We test the efficacy of our proposed approach on two bench- 

mark robotic problems: (i) tracking control of a two link robotic 

manipulator, and (ii) control of a SCARA. The controller is subjected 

to disturbances and parameter variations as well. Performance 

comparison has been done against baseline fuzzy Q learning and 

Lyapunov theory based Markov game controller. Rest of the paper 

is organized as: theoretical background of reinforcement learning 

paradigm and fuzzy Q learning is given in Section 2 . Section 3 de- 

tails proposed approach and application of proposed scheme on 

two link manipulator and SCARA is given in Section 4 . In Section 5 , 

we give simulation results and comparison against fuzzy Q learn- 

ing and Lyapunov theory based Markov game controller which is 

followed by conclusion and future scope in Section 6 . 

2. Reinforcement learning and fuzzy Q learning 

Reinforcement learning is learning by interacting with the sys- 

tem one intends to control. Typical goal is to maximize an accumu- 

lated reward or minimize cost (obtained at each step/interaction). 

Basically, RL is a family of stochastic iterative algorithms for finding 

an optimal solution to a sequential decision making problem [13] . 

RL algorithm can be ; (i) model based wherein a model of the un- 

derlying system is learned and is used to generate an optimal so- 

lution, and (ii) model free, e.g., Q learning in which model of the 

plant/system is learned impromptu [13] . Model free RL techniques 

have gained importance as no model of the system is required and 

are simple to apply. Next, we describe Q learning (a model free RL 

approach). 

2.1. Q learning 

Q learning was proposed by Watkins [13] as a model free tech- 

nique to optimize unknown systems. It models the sequential de- 

cision making task (optimization of controller) as a Markov Deci- 

sion Process (MDP). MDP is a sequential decision making model 

in which at time instant k an agent (or controller) applies action 

u ∈ U ( s ) in state s ∈ S making the environment (or system) move to 

the next state s ′ ∈ S , emitting a reward (or cost) c. U(s) and S are 

set of all possible actions in state s and set of all possible states, 

respectively. This movement from s to s’ is in accordance with state 

transition probability p(s,u,s ′ ). Agent’s objective is to optimize pol- 

icy π : π (s) → u; u ∈ U(s) , so that expected accumulated discounted 

cost is minimized [3] . In Q learning, we define a Q -value as the 

expected accumulated cost incurred by agent on taking action u in 

state s and then continuing on an optimal policy. Q -value, Q(s,u) is 

given by [3] 

Q(s, u ) = c(s, u ) + ξ
∑ 

s ′ ∈ S 
p(s, u, s ′ ) V (s ′ ) (1) 

where V (s ′ ) = min 

u ∈ U(s ′ ) 
Q 

∗(s ′ , u ) and ξ ∈ (0, 1] is discount factor that 

gives relationship between present and future cost. 

We can generalize (1) as update rule 

Q( s k , u 

k ) ← Q( s k , u 

k ) + λ[ c( s k , u 

k ) 

+ ξ min 

u ∈ U(s ′ ) 
Q( s k +1 , u 

k ) − Q( s k , u 

k )] (2) 

where s k and s k +1 denotes state at k th and (k + 1) th iteration, u k 

gives action taken at iteration k, λ∈ (0, 1] is learning rate parame- 

ter. Infinitely large visit to each state action pair and proper decre- 

ment in λ gives optimal Q -values i.e. Q 

∗. 

2.2. Fuzzy Q learning 

In Q learning, we need to store Q values for each visited state 

action pair; Q value storage becomes infeasible for large state 

spaces. This problem can be solved using generalization tech- 

niques, e.g., neural network (NN) and fuzzy logic have been used 

for generalization [ 1,3 –6 ]. We use fuzzy inference system (FIS) to 

implement Q learning, also known as fuzzy Q learning. Rules for- 

mulated in fuzzy Q learning (FQL) have the form [3] : 

R n : If s k 1 is L n 1 and ..... and s k m 

is L n m 

then u = u 1 with q (n, 1) 

or u = u 2 with q (n, 2) 

......... 

or u = u p with q (n, p) (3) 

In rule R n linguistic term L n v for input variable s k v has member- 

ship function ηL n v 
. s k denotes system state { s k 

1 
, s k 

2 
, ....., s k m 

} at instant 

k , and acts as input to the FIS. Matching of rule premise to the 

input vector s k is used to calculate truth-value of each rule μ( s k ): 

[ μ1 ( s 
k ) μ2 ( s 

k ).... μN ( s 
k )] corresponding to N rules. 

In n th rule ( R n ) the agent selects minimizing action, i.e., the one 

with minimum q ( n, u m 

) value from set U = { u 1 , u 2 , ..., u p } : 
u 

∗
n = arg min 

u n ∈ U 
q (n, u n ) (4) 
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