
ARTICLE IN PRESS 

JID: NEUCOM [m5G; July 7, 2017;3:29 ] 

Neurocomputing 0 0 0 (2017) 1–14 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

MRI reconstruction via enhanced group sparsity and nonconvex 

regularization 

Shujun Liu 

a , ∗, Jianxin Cao 

a , Hongqing Liu 

b , Xichuan Zhou 

a , Kui Zhang 

a , Zhengzhou Li a 

a College of Communication Engineering, Chongqing University, Chongqing 40 0 044, China 
b Chongqing Key Lab of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 40 0 065, China 

a r t i c l e i n f o 

Article history: 

Received 1 December 2016 

Revised 15 April 2017 

Accepted 26 June 2017 

Available online xxx 

Communicated by Shaoting Zhang 

Keyword: 

CS-MRI 

Sparse representation 

Optimal permutation 

Nonconvex optimization 

a b s t r a c t 

In this paper, a new approach to perform compressed sensing MRI (CS-MRI) reconstruction based on en- 

hanced group sparsity and nonconvex regularization (GSNR) is presented. A new framework is developed 

at attempt to improve the group sparsity and the accuracy of estimated coefficients. To that end, first, we 

establish a generalized reordering model to train the optimal permutation, which reveals the inner struc- 

ture of group and benefits to promote the sparsity of group for an arbitrarily fixed transform. Second, 

with the nonconvex log-sum regularization, a fast shrinkage operator to solve the corresponding noncon- 

vex optimization problem is developed in which the optimal solution is accurately and quickly obtained. 

The effectiveness of GSNR is demonstrated for both noiseless and noisy real MR images. In both cases, 

the proposed algorithm generates high-quality images that are superior in terms of visual inspection and 

objective evaluations to the state-of-the-art approaches. In addition, the effects of reordering and non- 

convex regularization are verified by simulations, respectively, to illustrate the superior performance of 

GSNR because of the proposed framework. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Magnetic resonance imaging (MRI) provides a powerful and ef- 

fective technique for current clinical diagnosis and scientific re- 

search due to its high resolution and noninvasiveness. One of the 

technical challenges faced by cine MRI is to reduce the acquisi- 

tion time enabling the high spatio-temporal resolution imaging of 

a cardiac volume within a short scan time. Normally, undersam- 

pling k-space is a good means to accelerate imaging time for MRI. 

However, undersampling violates the Nyquist sampling rule, result- 

ing in artifacts in reconstructed magnetic resonance (MR) images. 

To overcome this issue, a new promising approach termed as com- 

pressed sensing (CS) [1,2] has been extensively investigated and 

widely applied in signal processing, inverse problems and medi- 

cal imaging. The theory of CS states that if a signal has sparse 

representation in a given transform domain, it is possible to re- 

construct signals/images from fewer measurements with little or 

no information loss than that expected from the Nyquist sampling 

criterion. From the excellent performance produced by CS, it has 

been quickly applied to accelerate MRI research in some specific 

areas, for example, 2D MRI [3,4] , dynamic MRI [5] , and other MRI 
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applications [6,7] , by exploiting the sparse characteristic of image 

in a certain transform domain. 

It is well-known that finding a sparse representation is vital to 

ensure the successful CS-MRI reconstruction, and studies show that 

higher sparsity of the image in the transform domain will lead to 

better quality of the reconstruction results [8,9] . In most cases, CS- 

MRI reconstruction methods utilize the sparsity of entire image in 

a pre-defined transform domain. For example, the finite difference 

as a sparse transform is studied, which is the famous total varia- 

tion (TV) regularization [4,10] , and discrete cosine transform (DCT), 

discrete wavelet transform (DWT) and contourlet transform to en- 

force the sparsity of images during the CS-MRI reconstruction, are 

also studied in [3,11,12] . From the results reported, these methods 

based on image-level sparsity constraints are applicable to charac- 

terize only a few features and some artifacts may appear in the re- 

constructed results due to the lack of adaptation in the predefined 

transforms. Several approaches are developed to suppress the arti- 

facts by exploring the combination of the fixed transform domains, 

but the improvement is still limited [13,14] . 

To find a better sparse representation, K-SVD [15] is devel- 

oped to train a patch-based dictionary, which utilizes the local 

sparsity of patch. It is also reported in [16] that patch-based 

sparse representation effectively characterizes local image features 

via dictionaries adaptively learnt from k-space data. Motivated by 

this, several methods are subsequently proposed to train adaptive 
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dictionaries or transforms [17,18] , which represent patches more 

sparsely and obtain more promising reconstructions. The issue of 

those methods is, however, that sparse coding is separately oper- 

ated on each patch and the correlation among patches is not ex- 

plored. 

Recent developments also reveal that the nonlocal similarity 

among patches plays an important role in image recovery and 

by utilizing this features, the reconstructions show significant im- 

provements [19-21] . One of the pioneer work exploring the similar 

patches for target patch is block-matching and 3D filtering (BM3D) 

[19] for image denoising. In the BM3D, a powerful 3D transform 

which is realized by implementing multiple DWTs or DCTs on each 

dimension of group is developed to sparsely represent the image. 

Thanks to the utilization of the similarity of the patches in the 

group, 3D transform achieves higher sparsity than patch-based 2D 

sparse representation [22] . The BM3D presents an important en- 

lightenment on how to combine the local sparsity and nonlocal 

similarity to make full use of prior information. Inspired by the 

group sparsity, this idea has been also validated in the applica- 

tions of CS-MRI reconstruction [22-24] . Compared with the patch- 

based CS reconstruction, group-based methods demonstrate great 

improvements in terms of the details preservation and artifacts re- 

moval. Similarly, low-rank regularization for group recovery also 

takes the advantages of the nonlocal similarity, and its intrinsic 

equivalence to the group sparsity has been proved [25] . In [26] , the 

low-rank regularization has been applied to CS-MRI and achieves 

the state-of-the-art performance. 

In the group-based sparse representation, the orthogonal trans- 

forms are generally utilized to implement sparse coding [22,23] . 

To enhance group-based sparsity, the idea of adaptive transforms 

is developed, and among them, the K-SVD is representative that 

trains all bases in a global dictionary, but involves large-scale op- 

timization problem with high computational complexity. Different 

from training dictionary, a novel reordering technique is also pro- 

posed to overcome the shortage of general transforms [27] . This 

idea works as follows. First, a permutation is learnt from the pre- 

reconstructed signal. Second, based on this permutation, the signal 

is reordered to be more suitable for the pre-defined transform. The 

primary mechanism of this scheme is that the trained permutation 

carries structural information of image, and the pre-defined trans- 

form combined with reordering can thus adaptively represent the 

structure of image. Based on this concept, several approaches are 

proposed to reorder pixels in the image in terms of intensities to 

promote the quality of recovery results when TV or DCT is used 

as the fixed bases [27,28] . Furthermore, patch-based directional 

wavelet (PBDW) [29] is proposed to perform geometric transform 

on patches before wavelet sparse representation to improve the 

sparsity patch. Unfortunately, these methods only adopt conven- 

tional strategies to reorder pixels, and the improvement of sparsity 

is somewhat limited. Therefore, establishing a better framework to 

train the optimal permutation is urgent to better recover the im- 

age. 

Once the sparsity is improved by the adaptive sparse trans- 

form, another important issue is how to regularize the sparsity of 

group in transform domain with the constraint of k-space data. 

The standard quantitative metric to promote sparsity is l 0 norm, 

which leads a NP hard problem. Nevertheless, it has been proved 

that the l 0 norm can be replaced with its closest convex surrogate, 

namely l 1 norm, to produce exact reconstructions, but with more 

measurements [2] . Because of the simplicity of the l 1 norm, nu- 

merous algorithms based on l 1 -minimization have been proposed 

to successfully reconstruct MRI [3,12,13] via mature methods such 

as IST [30] , ADMM [31] . In recent years, nonconvex functions are 

starting to attract people attentions in performing sparsity regular- 

ization. In [32,33] , the nonconvex l p (0 < p < 1) norm and log-sum 

function are separately utilized as regularization terms, which yield 

more accurate results than that of l 1 norm. For the low-rank based 

model, nonconvex schatten p -norm in [34] and logdet in [26] are 

proposed to replace convex nuclear norm as the surrogate for the 

rank, respectively, and significant improvements are achieved. It 

is now safe to conclude that the nonconvex norm better approx- 

imates the l 0 norm and reduces the requirements for measure- 

ments [35,36] . 

In this paper, inspired by the nonconvex regularizations, we 

propose a new framework to take advantages of both reorder- 

ing and nonconvex optimization. The main contributions of this 

work are as follows. First, we reanalyze the intrinsic relationship 

between reordering and sparsity, and based the analysis, a more 

general permutation matrix to define the reordering operation is 

proposed. Furthermore, the corresponding optimization problem to 

search the optimal permutation used to reorder patches of group is 

established. To increase the accuracy, the permutation calculation 

for each group is updated at each iteration. Second, the log-sum 

function as regularization term to accurately estimate transformed 

coefficients of group is adopted, and a new shrinkage function to 

efficiently solve the corresponding nonconvex optimization prob- 

lem is designed. The analysis also shows that the proposed ap- 

proach is computationally efficient. Finally, experimental results on 

in vivo MR images illustrate that the proposed algorithm based on 

group sparsity and nonconvex regularization (GSNR) provides the 

state-of-the-art performance in terms of both visual inspection and 

objective evaluation, compared with other approaches. 

The remainder of this paper is organized as follows. The con- 

ventional CS-MRI reconstruction is briefly reviewed in Section 2 . 

The new framework which combines group sparsity and noncon- 

vex regularization is presented in Section 3 . The proposed reorder- 

ing scheme is provided in Section 3.2 . The log-sum regulariza- 

tion and the corresponding shrinkage function are developed in 

Section 3.3 . The experimental results are compared with current 

state-of-the-art methods and analyzed in Section 4 . This paper 

concludes with a brief summary in Section 5 . Proofs of mathemat- 

ical formulas are presented in Appendix . 

2. Review of traditional CS-MRI reconstruction 

The general CS-MRI reconstruction model is studied, given by 

y = F u x + v , (1) 

where y ∈ C 

K is the undersampled k-space data, x ∈ C 

M is the dis- 

crete image to be reconstructed, F u ∈ C 

K×M ( K � M ) is the under- 

sampled Fourier encoding matrix, and v ∈ C 

K is the additive noise 

vector. Utilizing the prior knowledge of the image x , the solution ˆ x 

of the above ill-posed inverse problem can be estimated from the 

undersampled k-space data y through solving the following mini- 

mization problem 

ˆ x = arg min 

x 

λ

2 

‖ 

y − F u x ‖ 

2 
2 + 

∥∥�H x 
∥∥

p 
, (2) 

where ‖ y − F u x ‖ 2 2 is the data fidelity term, λ is the regularization 

parameter, ‖ �H x ‖ p is prior term which enforces the sparsity of the 

coefficient of the reconstructed x in a certain transform domain 

�H (for example, DCT, wavelet), and ‖‖ p stands for the l p norm 

(0 ≤ p ≤ 1). For patch-based sparse representation, the assumption 

is that arbitrary image patch x i can be sparsely represented by x i = 

�αi [16] , where αi denotes the sparse coefficients of x i . Therefore, 

the patch-based optimization becomes 

(
ˆ x , ˆ α

)
= arg min 

x , α

λ

2 

‖ 

y − F u x ‖ 

2 
2 + 

β

2 

N ∑ 

i =1 

‖ 

R i x − �αi ‖ 

2 
2 + 

N ∑ 

i =1 

‖ 

αi ‖ p , 

(3) 

where R i stands for a matrix operator extracting the patch at posi- 

tion i , i.e., x i = R i x , β is a penalty parameter. To obtain the solution, 
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