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a b s t r a c t 

The properties of a boundedness estimations are investigated during the training of online back- 

propagation method with L 2 regularizer for Sigma-Pi-Sigma neural network. This brief presents a unified 

convergence analysis, exploiting theorems of White for the method of stochastic approximation. We ap- 

ply the method of regularizer to derive estimation bounds for Sigma-Pi-Sigma network, and also give 

conditions for determinating convergence ensuring that the back-propagation estimator converges al- 

most surely to a parameter value which locally minimizes the expected squared error loss. Besides, some 

weight boundedness estimations are derived through the squared regularizer, after that the boundedness 

is exploited to prove the convergence of the algorithm. A simulation is also given to verify the theoretical 

findings. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Sigma-Pi-Sigma ( � − � − �) neural network (SPSNN) is a 

kind of high-order network which can learn to implement static 

mapping in a resemblant manner to that of multilayer neural net- 

works [1] . Due to its output possesses of product-of-sum type, SP- 

SNN is expected to own stronger modeling capability and over- 

come difficulties of mapping in high-dimensional input space, 

which employs rich internal nonlinear dynamics, making them 

suitable for dynamic system identification. Literatures illustrate 

that the new structure conquers difficulties in function approxima- 

tion and high-dimensional mapping, which might be encountered 

when using multilayer neural networks and radial basis function 

networks. 
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However, when training the networks with the sum-squared er- 

ror function, the weights iterated through online gradient method 

sometimes become giant and the phenomenon of over-fitting is 

easy to appear. A standard technique to prevent over-fitting is L 2 
regularizer added to the original loss error, which is a term propor- 

tional to the magnitude of the weights for punishing large weights 

[2] . Regularization is an elegant and trustworthy trick of obtaining 

better generalization through neural network training. The funda- 

mental principles of regularizer method are outlined for both lin- 

ear and nonlinear functions and then extended to overlap some 

hybrid training algorithm for feedforward neural networks. The 

idea of functional regularizer is also recommended and studied in 

high-order networks [3] . 

Online gradient method has been a widely used and popular 

learning algorithm for networks. There has been some concentra- 

tion on the convergence analyses of the learning methods for feed- 

forward networks. For example, the deterministic convergence for 

the networks was deliberated in [4] . Zhang et al. [5] discussed the 

online gradient method with penalty term, in which the patterns 

are presented in a stochastic ordered sequence. [6] settled down 

the convergence analysis issue with any analytic sigmoid activa- 

tion function. On the other hand, [7] discussed the convergence of 

online BP training algorithm under the condition that when the 
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Fig. 1. A Sigma-Pi-Sigma network. 

activation function of the neural networks is linear. [8] researched 

the convergence of the learning method by exploiting the stochas- 

tic approximation theory in [9] . Other convergence results obtained 

through probabilistic asymptotic analysis and deterministic analy- 

sis could be referred to [10–17] . 

But there remains an absence of theoretical guarantee on the 

Sigma-Pi-Sigma network, especially for online format. One main 

objective of this paper is to accomplish this gap by proving that 

for Sigma-Pi-Sigma network the weights in the training procedure 

are indeed bounded for the online gradient method with L 2 regu- 

larizer. Moreover, the techniques demonstrated in the convergence 

proof could be generalized to other online cases and used to gain 

the similar convergence conclusions if this regularizer is also added 

to the original lost error. Specifically, we make the following con- 

tributions: 

(1) Online BP algorithm with L 2 regularizer is utilized to train 

SPSNN, in which L 2 regularizer acts as a brute-force to prevent the 

magnitude of the weights from getting too large in the training 

process. 

(2) The boundedness of the network weights is one crucial con- 

dition for the convergence analysis. However, these boundedness 

conditions might be hard to check. Owing to L 2 regularizer, we 

prove the weights are automatically bounded. 

(3) Furthermore, the convergence of online BP algorithm with 

L 2 regularizer for SPSNN is proved, in which the boundedness 

properties are derived and hence the boundedness is no longer 

needed as a precondition otherwise than pre-mentioned literatures 

( [13,14] ). 

The rest of this brief is organized as follows. Section 2 provides 

a brief introduction to the Sigma-Pi-Sigma network and its on- 

line BP method with L 2 regularizer. The main results are presented 

in Section 3 . The rigorous proofs of the main results are carried 

out in Section 4 . Simulation results are given in Section 5 . Finally, 

Section 6 provide a conclusion. 

2. Sigma-Pi-Sigma network and its online BP method with L 2 
regularizer 

2.1. Sigma-Pi-Sigma ( � − � − �) network 

The structure of a SPSNN is composed of different high-order 

neurons. Fig. 1 illustrates the arrangement of Sigma-Pi-Sigma net- 

work, which consist of an input layer, two hidden layers of the 

summing layer ( �1 layer) and the product layer ( � layer), and an 

output layer ( �2 layer). The number of neurons of these layers are 

M, N, Q and 1, respectively. Let { d j , x j } J 
j=1 

∈ R × R 

M be the given 

training example set, where d j is the corresponding desired out- 

put for x j . Denote by θ0 = (θ0 , 1 , . . . , θ0 ,Q ) 
T ∈ R 

Q the weight vector 

linking the �2 layer and the � layer. The weights linking the �

layer and the �1 layer are fixed to constant 1. The weight vec- 

tor linking the input layer and the n th neuron of the �1 layer 

is θn = (θn, 1 , . . . , θn,M 

) T ∈ R 

M (1 ≤ n ≤ N) . Here, we remark that 

x 
j 
M 

≡ −1 ( j = 1 , . . . , J) , then θnM 

(n = 1 , . . . , N) are corresponding 

thresholds for the input layer. This disposal blends these thresholds 

into the weight vectors for unified notation. We write χ = (d, x T ) T 

and all the weights into one vector θ = (θT 
0 
, θT 

1 
, . . . , θT 

N 
) T ∈ R 

Q+ NM . 

In the SPSNN, the linear activation function is usually exploited for 

the product units, while the sigmoidal functions φ, ψ : R → R are 

the activation functions for the �1 layer and the �2 layer, respec- 

tively. 

The flow of the SPSNN goes as follows. Given an input pattern 

x ∈ R 

M , after which the output of �1 layer is ζ ∈ R 

N could be com- 

puted by 

ζ = 

(
ζ1 , ζ2 , . . . , ζN 

)T 

= 

(
φ(θ1 · x ) , φ(θ2 · x ) , . . . , φ(θN · x ) 

)T 

, (1) 

where “· ” is the inner product. For any a = (a 1 , . . . , a N ) 
T ∈ R 

N , a 

vector function is defined by 

�(a ) = 

(
φ(a 1 ) , φ(a 2 ) , . . . , φ(a N ) 

)T 

. (2) 

Then, the output vector for the �1 layer is 

ζ = �( ̃  θx ) = 

(
φ(θ1 · x ) , φ(θ2 · x ) , . . . , φ(θN · x ) 

)T 

, 

where ˜ θ = (θ1 , . . . , θN ) 
T ∈ R 

N×M . 

As in Fig. 1 , each product node of the � layer is connected with 

certain nodes (say {1, 2}, {1}, or {2}) of the �1 layer and is in ac- 

cordance with a particular polynomial (say, correspondingly, x 1 x 2 , 

x 1 or x 2 ). The N nodes in the �1 layer and the � layer could be 

fully connected as shown in Fig. 1 with N = 2 . At this moment, 

the number of the � layer is C 0 
N 

+ C 1 
N 

+ C 2 
N 

+ · · · + C N 
N 

= 2 N . The �1 

layer and the � layer are sparsely connected when the number of 

the � layer is less than 2 N . This polynomial, that is, the output of 

the � layer, is actually constructed by a weighted linear incorpo- 

ration such as θ0 , 1 + θ0 , 2 x 1 + θ0 , 3 x 3 + θ0 , 4 x 1 x 2 . 

The output of the � layer is τ = (τ1 , . . . , τQ ) 
T ∈ R 

Q after ζ, in 

which the component τ q (1 ≤ q ≤ Q ) is a part product of ζ. Specif- 

ically, let 
q (1 ≤ q ≤ Q ) be the subscript set in which the vector 

ζ ’s components linked to τ q . Then, τ q is calculated by 

τq = 

∏ 

λ∈ 
q 

ζλ , 1 ≤ q ≤ Q . (3) 

The final output of � − � − � network, i.e. the output of the 

�2 layer is 

y = ψ(θ0 · τ) . (4) 

2.2. The online BP method with L 2 regularizer for SPSNN 

Recall that given an input pattern x , its desired output is d , and 

the actual output of the network is y , then the instant loss function 

is given according to the following equation, 

ˆ E (θ, χ) = 

1 

2 

(d − y ) 2 = 

1 

2 

(
d − ψ(θ0 · τ) 

)
. (5) 

A common practice to add a regularizer term to the error function 

during training, which is sum of the squared weights. Hence, the 

complete error function to be minimized during the training pro- 

cess is 

E(θ, χ) = 

ˆ E (θ, χ) + 

1 

2 

λ‖ θ‖ 

2 
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