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The properties of a boundedness estimations are investigated during the training of online back-
propagation method with L, regularizer for Sigma-Pi-Sigma neural network. This brief presents a unified
convergence analysis, exploiting theorems of White for the method of stochastic approximation. We ap-
ply the method of regularizer to derive estimation bounds for Sigma-Pi-Sigma network, and also give

conditions for determinating convergence ensuring that the back-propagation estimator converges al-
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most surely to a parameter value which locally minimizes the expected squared error loss. Besides, some
weight boundedness estimations are derived through the squared regularizer, after that the boundedness
is exploited to prove the convergence of the algorithm. A simulation is also given to verify the theoretical

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Sigma-Pi-Sigma (X — Il — ¥) neural network (SPSNN) is a
kind of high-order network which can learn to implement static
mapping in a resemblant manner to that of multilayer neural net-
works [1]. Due to its output possesses of product-of-sum type, SP-
SNN is expected to own stronger modeling capability and over-
come difficulties of mapping in high-dimensional input space,
which employs rich internal nonlinear dynamics, making them
suitable for dynamic system identification. Literatures illustrate
that the new structure conquers difficulties in function approxima-
tion and high-dimensional mapping, which might be encountered
when using multilayer neural networks and radial basis function
networks.
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However, when training the networks with the sum-squared er-
ror function, the weights iterated through online gradient method
sometimes become giant and the phenomenon of over-fitting is
easy to appear. A standard technique to prevent over-fitting is L,
regularizer added to the original loss error, which is a term propor-
tional to the magnitude of the weights for punishing large weights
[2]. Regularization is an elegant and trustworthy trick of obtaining
better generalization through neural network training. The funda-
mental principles of regularizer method are outlined for both lin-
ear and nonlinear functions and then extended to overlap some
hybrid training algorithm for feedforward neural networks. The
idea of functional regularizer is also recommended and studied in
high-order networks [3].

Online gradient method has been a widely used and popular
learning algorithm for networks. There has been some concentra-
tion on the convergence analyses of the learning methods for feed-
forward networks. For example, the deterministic convergence for
the networks was deliberated in [4]. Zhang etal. [5] discussed the
online gradient method with penalty term, in which the patterns
are presented in a stochastic ordered sequence. [6] settled down
the convergence analysis issue with any analytic sigmoid activa-
tion function. On the other hand, [7] discussed the convergence of
online BP training algorithm under the condition that when the
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Fig. 1. A Sigma-Pi-Sigma network.

activation function of the neural networks is linear. [8] researched
the convergence of the learning method by exploiting the stochas-
tic approximation theory in [9]. Other convergence results obtained
through probabilistic asymptotic analysis and deterministic analy-
sis could be referred to [10-17].

But there remains an absence of theoretical guarantee on the
Sigma-Pi-Sigma network, especially for online format. One main
objective of this paper is to accomplish this gap by proving that
for Sigma-Pi-Sigma network the weights in the training procedure
are indeed bounded for the online gradient method with L, regu-
larizer. Moreover, the techniques demonstrated in the convergence
proof could be generalized to other online cases and used to gain
the similar convergence conclusions if this regularizer is also added
to the original lost error. Specifically, we make the following con-
tributions:

(1) Online BP algorithm with L, regularizer is utilized to train
SPSNN, in which L, regularizer acts as a brute-force to prevent the
magnitude of the weights from getting too large in the training
process.

(2) The boundedness of the network weights is one crucial con-
dition for the convergence analysis. However, these boundedness
conditions might be hard to check. Owing to L, regularizer, we
prove the weights are automatically bounded.

(3) Furthermore, the convergence of online BP algorithm with
L, regularizer for SPSNN is proved, in which the boundedness
properties are derived and hence the boundedness is no longer
needed as a precondition otherwise than pre-mentioned literatures
([13,14]).

The rest of this brief is organized as follows. Section 2 provides
a brief introduction to the Sigma-Pi-Sigma network and its on-
line BP method with L, regularizer. The main results are presented
in Section 3. The rigorous proofs of the main results are carried
out in Section4. Simulation results are given in Section5. Finally,
Section 6 provide a conclusion.

2. Sigma-Pi-Sigma network and its online BP method with L,
regularizer

2.1. Sigma-Pi-Sigma (¥ — I1 — X) network

The structure of a SPSNN is composed of different high-order
neurons. Fig.1 illustrates the arrangement of Sigma-Pi-Sigma net-
work, which consist of an input layer, two hidden layers of the
summing layer (X4 layer) and the product layer (IT layer), and an
output layer (X, layer). The number of neurons of these layers are

M, N, Q and 1, respectively. Let {df,xf}Jj=1 € R xRM be the given

training example set, where d' is the corresponding desired out-
put for x/. Denote by 6y = (6 1. ....60,0)" € R? the weight vector
linking the X, layer and the IT layer. The weights linking the IT
layer and the X; layer are fixed to constant 1. The weight vec-
tor linking the input layer and the nth neuron of the 3; layer
is Op=(0h1,...,00m)T €RM (1 <n <N). Here, we remark that
x{;/, =-1((=1,....]), then O, (n=1,...,N) are corresponding
thresholds for the input layer. This disposal blends these thresholds
into the weight vectors for unified notation. We write x = (d,x")T
and all the weights into one vector § = (67,07, ..., 07)T € R&+NM,
In the SPSNN, the linear activation function is usually exploited for
the product units, while the sigmoidal functions ¢, V¥ : R — R are
the activation functions for the ¥ layer and the X, layer, respec-
tively.

The flow of the SPSNN goes as follows. Given an input pattern
X € RM, after which the output of 24 layer is £ € RN could be com-
puted by

T

G (¢(01~x),¢>(0z-x>,...,¢(0N~x))T,(1)

where “. " is the inner product. For any a = (a1,...,aN)T eRN, a
vector function is defined by

®(a) = (d)(a]),qb(az), . .‘,¢><aN))

Then, the output vector for the ¥; layer is
- T
£ =20 = ($01-2. 90 %).....400 X)) .

where 6 = (0;, ..., 0y)" e RN*M.

As in Fig. 1, each product node of the IT layer is connected with
certain nodes (say {1, 2}, {1}, or {2}) of the X; layer and is in ac-
cordance with a particular polynomial (say, correspondingly, x;x;,
X1 or X). The N nodes in the X layer and the IT layer could be
fully connected as shown in Fig.1 with N =2. At this moment,
the number of the IT layer is C +C} +CZ +--- +CN = 2N. The %,
layer and the IT layer are sparsely connected when the number of
the IT layer is less than 2N. This polynomial, that is, the output of
the IT layer, is actually constructed by a weighted linear incorpo-
ration such as 6y 1 + 69 2X1 + 6p 3X3 + Op 4X1X.

The output of the IT layer is T = (71,...,79)" € RQ after £, in
which the component 74 (1 < q < Q) is a part product of ¢. Specif-
ically, let Agq (1 < q < Q) be the subscript set in which the vector
¢ ’s components linked to 4. Then, 74 is calculated by

u=[]&. 1=g9=Q. 3)

AeAq

T

(2)

The final output of ¥ — IT — ¥ network, i.e. the output of the
Y, layer is

y=v% 7). (4)
2.2. The online BP method with L, regularizer for SPSNN
Recall that given an input pattern X, its desired output is d, and

the actual output of the network is y, then the instant loss function
is given according to the following equation,

6.0 =50~y =5(d-v® D). 5)

A common practice to add a regularizer term to the error function
during training, which is sum of the squared weights. Hence, the
complete error function to be minimized during the training pro-
cess is

A 1
£00.x) =£0. ) + 5211012
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